
A Study of Undefined Behavior Across Foreign Function
Boundaries in Rust Libraries
IAN MCCORMACK, Carnegie Mellon University, USA
JOSHUA SUNSHINE, Carnegie Mellon University, USA
JONATHAN ALDRICH, Carnegie Mellon University, USA

The Rust programming language restricts aliasing and mutability to provide static safety guarantees, which
developers rely on towrite secure and performant applications. However, Rust is frequently used to interoperate
with other languages that have far weaker restrictions. These languages support cyclic and self-referential
design patterns that conflict with Rust’s aliasing model, representing a potentially significant source of
undefined behavior that has remained understudied due to limitations in tooling. We created MiriLLI: a tool
which can detect this type of undefined behavior by using Rust and LLVM interpreters to jointly execute
multi-language applications. We used our tool in a large-scale study of Rust libraries that call foreign functions,
and we found 45 instances of undefined or undesirable behavior. These include four bugs from libraries that
had over 10,000 daily downloads on average, one from a component of the GNU Compiler Collection (GCC),
and one from a library maintained by the Rust Project. Most of these errors were caused by incompatible
aliasing and initialization patterns, incorrect foreign function bindings, and invalid type conversion. The
majority of aliasing violations were caused by unsound operations in Rust, but they occurred in foreign
code. The Rust community must invest in new tools for validating multi-language programs to ensure that
developers can easily detect and fix these errors.

CCS Concepts: • Software and its engineering→ Interpreters; Software maintenance tools; Software
verification and validation; Software defect analysis.

Additional Key Words and Phrases: Rust, LLVM, C, C++, Interoperation, Foreign Function Calls, Aliasing,
Mutability, Undefined Behavior

1 INTRODUCTION
The Rust programming language has been increasingly popular due to its static safety guarantees,
which provide security benefits comparable to garbage-collected languages without additional
run-time overhead [Pereira et al. 2017; Stack Overflow 2023]. However, Rust is frequently used
to interoperate with other languages that lack its restrictions on aliasing and mutability. Foreign
function calls are one of several unsafe features that developers can enable to bypass these restric-
tions when they become burdensome. It is difficult to use unsafe features correctly, as they have
been a significant source of security vulnerabilities for the Rust ecosystem [Xu et al. 2021]. Foreign
function calls present unique challenges in this area, since Rust’s operational semantics inhibit the
use of certain aliasing idioms that can be used freely in other languages.

We seek to determine whether these differences in semantics are causing undefined behavior in
real-world programs. We createdMiriLLI, a tool which extends two pre-exising Rust and LLVM
interpreters to jointly execute programs and detect violations of Rust’s aliasingmodel.We conducted
a large-scale evaluation of our tool on all compatible test cases from Rust libraries that called foreign
∗This material is based upon work supported by the Department of Defense and the National Science Foundation under Grant
Nos. CCF-1901033, DGE1745016, and DGE2140739. Results presented in this paper were obtained using CloudBank [Norman
et al. 2021], which is supported by the National Science Foundation under Grant No. CNS-1925001. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the Department of Defense, the National Science Foundation, or CloudBank.

Authors’ addresses: Ian McCormack, Carnegie Mellon University, USA, icmccorm@cs.cmu.edu; Joshua Sunshine, Carnegie
Mellon University, USA, sunshine@cs.cmu.edu; Jonathan Aldrich, Carnegie Mellon University, USA, jonathan.aldrich@cs.
cmu.edu.

2 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

functions. We found 9130 tests from 957 libraries that executed foreign code with our tool, and we
identified 45 instances of undefined or undesirable behavior from 35 of these libraries.

Our results indicate that Rust’s restrictions on cyclic and self-referential patterns make it easy to
inadvertently introduce undefined behavior through safe operations in the encapsulation of foreign
libraries. Tree Borrows violations were the most common type of bug that we detected, followed
by memory leaks and uses of uninitialized memory. Developers can take immediate steps to avoid
these errors by auditing their use of certain types at foreign function boundaries. However, the
Rust Project must invest in new tools to ensure that these errors can be easily detected.

Overview. In Section 2, we compare current and past models of Rust’s operational semantics
with C and C++ and describe the resources and best-practices that Rust developers can use to
ensure correct interoperation with foreign libraries. In Section 6, we review prior work on Rust
verification and interoperation. In Section 3, we document our methodology for sampling and
evaluating test cases from Rust libraries that call foreign functions. We provide a formal model of
our extension and describe how we account for differences between the interfaces and semantics of
LLVM and Rust. In Section 4, we describe each of the unique bugs that we encountered. We discuss
the implications of our findings in Section 5, and we conclude in Section 7.

2 BACKGROUND
Rust’s safety restrictions are enforced by its borrow checker, which validates theMiddle Intermediate
Representation (MIR) of Rust programs before they are lowered into the LLVM intermediate
representation [Klabnik and Nichols 2022]. These restrictions begin at the level of a value, which is
valid for a particular scope. A value’s type implements ‘traits’ that define its behavior. For example,
all types have ”move semantics” by default, denoting that each value has a unique owner. However,
values of types that implement the Copy trait have no owner and can be copied freely.

Ownership can be transferred through assignment or borrowed by creating a reference. References
are either mutable, taking the form &mut T, or immutable, with the form &T. Mutable references
have move semantics, but immutable references can be copied. Each reference has a “lifetime,”
which is the portion of the program over which it will be used. The borrow checker asserts that the
lifetime of a reference cannot exceed the scope or lifetime of the value that it refers to. A value can
only have a single mutable reference or many immutable references that are active within a given
context, but not both at the same time [Crichton 2020].

These restrictions statically eliminate data races and use-after-free errors, but they can be overly
conservative for certain design patterns. When developers need to bypass Rust’s safety restrictions,
they can use the unsafe keyword to enable a set of additional features that are not restricted by
the borrow checker within a limited context. Developers can use these features to access raw
pointers and the fields of union types, modify static mutable state, implement unsafe traits, and
call unsafe functions—including those written in other languages [Klabnik and Nichols 2022]. To
avoid introducing security vulnerabilities, developers are encouraged to mitigate the risks of using
unsafe code by keeping it local, minimal, and well-encapsulated [Qin et al. 2020].
The Rust compiler assumes that programs satisfy the constraints of the borrow checker. These

assumptions can be leveraged to apply behavior-preserving transformations that may lead to
significant performance gains [Ghiya et al. 2001]. However, if a program violates these assumptions
using unsafe code, then compile-time optimizations may break its semantics, leading to security
vulnerabilities and differences in functionality. Determining what should constitute undefined
behavior is not a trivial task; Jung [2021] frames undefined behavior as a “double-edged sword”
for compiler developers, who must balance performance and usability. If every possible behavior
is valid, then the compiler cannot assume much, but the definition of defined behavior is too

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 3

Fig. 1. A valid Rust code snippet (left) and its corresponding borrow stack (right). The first column of the table

on the righthand side indicates the type of permission represented by each of the blocks, which correspond

to the permissions created by each annotated location in the snippet. Permissions are pushed (push↓) and
popped (pop↑) at each of the lines in the snippet indicated by the last row.

1 let mut x = 0; 1

2 let y = &mut x; retag y; 2

3 let z = &*y; retag z; 3

4 *y = 1

5 x = 0;

push↓
SharedRO push↓ 3 pop↑

Unique

push↓ 2 pop↑
1

Lines: 1 2 3 4 5

restrictive, then it may be difficult to write correct programs. For example, Yodaiken [2021] outlines
how the ISO standard of C has become near-unusable for operating systems development, since its
overeager optimization leads to unexpected behavior in trivial situations.
The Stacked Borrows [Jung et al. 2019] and Tree Borrows [Villani et al. 2023] models of Rust’s

operational semantics attempt to address this problem. Both rely on the notion that the origin,
or provenance of a pointer can be used to determine if a memory access is valid [Jung 2024]. A
pointer’s provenance value must be associated with the location being accessed and it must grant
permission for the type of access taking place. The precise meaning of these conditions varies under
each model, but if either is unmet, then a memory access is considered to be undefined behavior.

2.1 Stacked Borrows
The Stacked Borrows [Jung et al. 2019] model of Rust’s operational semantics follows from the
observation that the lifetimes of references begin and end in a manner similar to objects being
pushed and popped from a stack. In this model, every pointer consists of an address and a “borrow
tag,” which is associated with a permission “item.” Items are contained in a stack associated with
each location. Borrowing a location pushes an item onto the stack, and when a reference is no
longer valid, its permission is popped from the stack. Every read, write, allocation, and deallocation
operation will validate and update the borrow stack for the location being accessed.
Figure 1 provides a minimal example that demonstrates the stack discipline of Rust’s reference

types.When the variable x is declared on Line 1, a new stack is created containing aUnique itemwith
the tag 1 . The item Unique denotes unique, mutable access to a location. Mutable references are
Unique, mutable pointers have shared, mutable access (SharedRW), and both immutable pointers
and immutable references have shared, read-only access (SharedRO). Variables start as either
Unique or SharedRW, depending on their mutability.

New permissions are created and pushed into the stack by the retag operation. This is not present
in written code, but it can be emitted by the Rust compiler for error checking. A retag is inserted
every time a reference is created, assigned, or cast into a raw pointer. We include retags in Figures 1
and 2d, but elide them elsewhere. In Figure 1, the variable x is mutably borrowed on Line 2 and then
immutably reborrowed on Line 3. Each borrow is followed by a retag, pushing new items onto
the stack with tags 2 and 3 . When y is used for a write access on Line 4, the tag 3 is popped
from the stack. This enforces the uniqueness of mutable references by making it an error for 2
and 3 to be used interchangeably within the same context. Similarly, writing through x on Line 5
invalidates 2 , since a location cannot have more than one mutable reference or alias.
The program in Figure 1 does not use unsafe features, so Rust’s borrow checker can statically

prove that it has defined behavior. However, raw pointers have few static restrictions, so it is
possible to invoke undefined behavior in unsafe contexts by accessing locations using permissions

4 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Fig. 2. Minimal examples representing the distinct categories of Stacked Borrows and Tree Borrows violations

that we consider in our evaluation.

(a) A code snippet containing an invalid
range error, which is only undefined behav-

ior under Stacked Borrows.

1 let mut point = (0, 0);

2 let x: &mut i32 = &mut point.0;

3 unsafe {

4 *((x as *mut i32).offset(1)) = 1; UB!

5 }

(b) A code snippet that produces an insufficient per-
mission error under both Stacked Borrows and Tree

Borrows.

1 let x: i32 = 0;

2 mutate(&x as *const _));

3 fn mutate(x: *const i32) {

4 unsafe {

5 *(x as *mut _) = 5; // UB!

6 }

7 }

(c) A code snippet that produces an expired
permission error under Stacked Borrows but

not under Tree Borrows.

1 let mut x: i32 = 0;

2 let y = &mut x as * mut _;

3 let z = &mut x;

4 unsafe { *y = 0; } // UB!

(d) A code snippet that produces a framing error under

both Stacked Borrows and Tree Borrows.

1 unsafe fn free(x: & mut u8, layout: Layout) {

2 retag x;

3 dealloc(x as * mut u8, layout); // UB!

4 }

that are insufficient or expired. There are four categories of undefined behavior under the Stacked
Borrows model which are relevant to our investigation. First, a reference cannot be used to access
locations outside of the range it originally borrowed, even if the reference still points to the same
allocation. This is illustrated by the example in Figure 2a, where the first field of the tuple point

is borrowed to create a reference that is offset into the second field. Reading through this new
reference is undefined behavior, since it originally borrowed from the first field. We refer to this
type of violation as an invalid range error.
If an access is within bounds, the next step is to find the “granting item,” [Jung et al. 2019] or

permission, associated with the reference’s tag. If that permission no longer exists in the stack,
then the access is undefined behavior. As shown in Figure 1, items are be “popped” from the stack
to assert that mutable permissions have unique access to a location during their lifetime. In the
following example, x is mutably borrowed to create a new permission, which is then cast into a
raw pointer (with “as *mut _”) and assigned to y. This process involves two retags: once to create a
unique mutable permission for &mut x, and then again to create a shared mutable permission when
this expression is cast into a raw pointer. Before creating new permissions, retags also performs a
simulated read or write access using the newly created permission. When x is mutably borrowed on
Line 3, a third retag performs a write access through x, popping the mutable SharedRW permission
held by y. This makes the write access on Line 4 undefined behavior, since the tag for y no longer
exists in the stack. We refer to this type of error as an expired permission error.

Once a valid permission has been located, it must also permit the type of access taking place. In
the following example, the variable x is immutably borrowed on Line 2 to create a reference that is
cast into a const pointer and passed to the function mutate. On Line 5, in the body of mutate, it is
cast into a mut pointer and mutated. Despite having a mutable type, this pointer retains a shared,
read-only permission from when &x was cast into *const i32 on Line 5, so it cannot be used for
writing. We refer to this type of violation as an insufficient permission error

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 5

Fig. 3. An example illustrating the structure and semantics of permissions in Tree Borrows. Each cell in the

table on the righthand side illustrates the state of the permissions associated with each circled borrow tag,

before and after the write access on Line 5

1 let mut w: i32 1 = 0;

2 let x = &mut w 2 as *mut _;

3 let y = &w; 3

4 let z = &mut w; 4

5 unsafe { *x = 1; }

Active 1
Reserved → Active 2
Frozen → Disabled 3
Reserved → Disabled 4

After finding a granting permission, the stack is modified based on the type of access taking
place. A write access may cause tags to be popped from the stack, as shown in prior examples.
However, certain permissions may be associated with a “protector”. Protected permissions are
created by special “function entry” retags, which apply to every reference-type argument at the
beginning of the body of a function. It is undefined behavior for a protected tag to be popped from
the stack before the associated call returns, at which point the protectors are removed. This asserts
that the lifetime of each reference-type argument must be at least the duration of the body of the
function. In Figure 2d, deallocating x destroys any stacks associated with its memory. However, the
function-entry retag protects the permission associated with x, so destroying this permission is
undefined behavior. We refer to an access that pops a protected tag as an framing error, since this
mechanism is analogous to enforcing the “framing rule” from Smans et al. [2012]’s separation logic
with implicit dynamic frames.

A memory access is defined behavior under Stacked Borrows if a stack exists for the location
being accessed, a granting permission is present in the stack, and the access does not invalidate
any protected permissions.

2.2 Tree Borrows
Tree Borrows [Villani et al. 2023] is an improved iteration on the Stacked Borrows model. Instead
of items in a stack, permissions are nodes in a tree. Borrowing creates a permission that forms a
new branch, which becomes the root of a subtree. For each subtree, a memory access is a child
access if requires the root permission or any of its descendants; otherwise, it is a foreign access.
Tree borrows takes a lazy approach to managing permissions that allows several behaviors

which are considered undefined under Stacked Borrows. Instead of creating a stack for each newly
borrowed range of locations, every allocation has a single tree of permissions. Any permission in a
tree can be used for any location within the bounds of its associated allocation. The example shown
in Figure 2c is no longer undefined behavior under Tree Borrows, since the permission created by
&point.0 is lazily extended to apply to point.1. Also, instead of performing simulated reads and
writes on retags, Tree Borrows only simulates read accesses, allowing multiple mutable references
to coexist until the first one is used. The write access on Line 4 in Figure 2c is no longer undefined
behavior under Tree Borrows, since the borrow on Line 3 no longer performs a write access.
Tree Borrows also uses different types of permissions, which are illustrated by the example

in Figure 3. The variable w is borrowed multiple times before being mutated through x. The tree
diagram on the right-hand side illustrates the permissions for each labelled reference before and
after the write access on Line 5. The tree for w is initialized with an Active permission, which
allows writes and is the default state for mutable locations. Each mutable borrow on Lines 2 and 4
creates a new branch in the tree with a Reserved permission, which is the initial, read-only phase
of mutable references in this model. The immutable borrow assigned to z creates a branch with

6 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

a Frozen permission, which is equivalent to SharedRO under Stacked Borrows. Since retags no
longer perform write accesses, Tree Borrows allows each of the references assigned to x, y, and z to
coexist up to the first write access through x on Line 5, at which point permission 2 transitions
from Reserved to Active, asserting unique access over the location of x. This is a foreignwrite access
relative to 3 and 4 , so the permissions for each of these tags become Disabled, which cannot be
used for any memory access.
Unlike Stacked Borrows, new pointers or references of certain types will receive the same tag

as the value that they were derived from. This includes raw pointers, mutable references to types
covered by Pin<T>, and shared references to types covered by UnsafeCell<T>, which opts out of
Rust’s aliasing XOR mutability guarantee. Other characteristics of Tree Borrows remain the same
as in Stacked Borrows. Reference types are given a protector on entry to each function, and a
framing error occurs when a protected tag transitions to Disabled. Writing through a pointer with
a Frozen permission is an insufficient permission error, and using a Disabled permission for any
type of access is an expired permission error. As such, the examples in Figures 2b and 2d are both
still undefined behavior under Tree Borrows.

2.3 Rust vs. C and C++
Rust shares several other categories of undefined behavior with C [ISO/IEC 2017] and C++ [ISO/IEC
2023] standards, such as accessing memory that has been freed, accessing beyond the bounds of an
allocation, creating a data race, reading uninitialized memory, and accessing a value at an address
that is not divisible by the alignment of its type. However, C and C++ have different rules related
to initialization, aliasing, mutability, and provenance that may introduce undefined behavior when
Rust is used in multi-language applications.

2.3.1 Initialization. In both C and C++, accessing an object in memory before it has been initialized
produces an “indeterminate value”, which is undefined behavior [ISO/IEC 2017, 2023]. There are
a few exceptions, however; static and thread local variables are initialized immediately at the
beginning of their lifetime, and both unsigned characters and bytes can soundly store indeterminate
values. It is also safe to create a reference to a value that is uninitialized. The initialization of a
value is not encoded into the type system; developers must manually reason about the state of
memory or rely on instrumentation to detect uninitialized reads.
Rust’s borrow checker prevents variables from being used until they are initialized, and no

primitive types tolerate indeterminate values in safe contexts. However, Rust’s standard library
provides the MaybeUninit<T> struct, which represents an instance of T that may or may not be
initialized. It is undefined behavior to produce a safe reference to uninitialized memory, so the
macros addr_of! and addr_of_mut!must be used to obtain raw pointers to the interior of an instance
of MaybeUninit<T> without borrowing against it. Once an instance has been fully initialized, the
unsafe function MaybeUninit<T>::assume_init() will unwrap the outer struct to produce the value
inside. It is undefined behavior to call assume_init() if T is not fully initialized.

2.3.2 Aliasing & Mutability. Neither C nor C++ statically restrict aliasing, but the standards for
each language allow implementations to make type-directed assumptions about aliasing. In both
languages, it is considered undefined behavior for a pointer to one type to refer to a value of
another type if the two types differ, with only few exceptions [ISO/IEC 2017, 2023]. Type differences
include qualifiers; for example, if a function takes two parameters of types int * and const int *,
it is undefined behavior for these two pointers to alias. If two pointer types are the same, the
compiler cannot make any immediate aliasing assumptions. The C standard defines the restrict

type qualifier, which indicates to a compiler that two pointer parameters with equal types will
never alias [ISO/IEC 2017]. However, restrict is not enforced and compilers can ignore it.

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 7

In Rust, both variables and references have distinct, connected capabilities for mutation. Variables
are immutable by default, only mutable variables can be borrowed mutably, and only mutable
references can be used for mutation. It is always undefined behavior to mutate memory through a
pointer or reference with immutable provenance unless the memory is covered by an UnsafeCell<T>.
Both C and C++ invert this pattern. By default, variables are mutable and the capability to mutate
memory through a pointer is entirely determined by the mutability of the object being pointed to,
regardless of the pointer’s type [ISO/IEC 2017, 2023]. If a variable was declared as mutable, then
any pointer to it—even a const pointer—can be cast into a mutable pointer and used to write to it.
Note that this is not equivalent to the semantics of Rust’s UnsafeCell<T>, which allows mutation
through a shared reference. Both C and C++ allow multiple mutable aliases for the same location,
while UnsafeCell<T> only allows mutation through multiple immutable references.

2.3.3 Provenance. Both C and C++ allow pointers to be converted to and from integers, which
must be at least as large as the word size of the current architecture. Otherwise, behavior is “imple-
mentation defined” [ISO/IEC 2017, 2023]. Compiler implementations may track the “provenance,”
or origin of pointers to inform compile-time optimizations [Feather 2004], but neither of the
current standards for C or C++ define if or how provenance should be preserved across these
conversions [ISO/IEC 2017, 2023]. The Rust project has settled on the notion of pointers having
provenance, but the specifics of Rust’s provenance model are still being decided [Jung 2024].

Miri is an interpreter for Rust programs that can validate unsafe code against both the Stacked
and Tree Borrows aliasing models [Rust Community 2024c]. It has multiple methods of handling
provenance across pointer to integer conversions. Its provenance values contain an identifier for
an allocation and a borrow tag. By default, Miri uses a “permissive provenance” model, which
matches Memarian et al. [2019]’s “PVNI-wildcard” model. When a pointer is converted into an
integer, its tag is added to a set of tags that have been “exposed” by pointer to integer conversion.
When integers are converted back into pointers, their allocation ID is reconstructed from their
address, but they receive a “wildcard” provenance value. When a memory access occurs under
Stacked or Tree Borrows using a wildcard tag,Miri’s model eagerly interprets this tag as being
equivalent to any tag in the stack or tree that will allow the access to take place. Alternatively,
developers can enable “strict provenance”, which treats any form of pointer to integer conversion
as an error.

2.4 Interoperation
Developers can access functions and static variables from foreign libraries using Rust’s foreign
function interface. Declarations, or “bindings”, for each of these objects are written in extern blocks,
which take an optional qualifier to indicate the application binary interface (ABI) used by the
foreign library. By default, extern is equivalent to extern "C", but Rust has many additional ABIs
for various languages, compilers, and architectures.
Only a subset of Rust’s types are guaranteed to be compatible with foreign ABIs. For example,

Rust’s string type &str is not null-terminated, so it is not safe to use as a *const char. Structs and
enums must be annotated with the #[repr(C)] attribute to ensure that their layout in memory
is compatible what C expects. The Rust compiler enforces the use of ABI-compatible types via
lints, but they can be manually disabled for individual contexts or entire applications. A future
iteration of Rust may provide support for declaring opaque types in extern declarations [Cann and
Community 2017]. Opaque types are used to reference a foreign type in Rust without having to
define its structure. The current best practice is to declare a struct #[repr(C)] with data field with
an empty array type [0;u8] and an additional field with an instance of PhantomData<T> for some
type T. The Rust compiler treats a value of type PhantomData<T> as if it were an instance of type T,

8 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

but in reality, it has no size and is erased during compilation. The correct choice of T depends on
the aliasing and thread-safety properties required for the foreign type to be used correctly.

Rust does not validate foreign bindings against their definitions, so manually writing bindings can
be error-prone. However, several tools can automatically generate foreign bindings from existing
codebases and user-provided specifications. Bindgen [Rust Community 2023a] analyzes C header
files and creates equivalent, architecture-specific Rust declarations of their API. Similar tools exist
for other languages, such as PyO3 [Rust Community 2024d] for Python and CXX [Rust Community
2024a] for C++. In particular, CXX allows developers to create a “bridge module” in Rust where
they can import and export items across the foreign boundary, and it provides Rust encapsulations
for key data structures from the C++ standard library. Other tools are targeted at creating bindings
for Rust APIs for use in other languages. CBindgen [Rust Community 2023b] does the reverse
of Bindgen, generating C APIs for Rust functions. Both Diplomat [Rust Community 2024b] and
UniFFI [Mozilla 2024] have somewhat similar roles to has CBindgen, but they require different
levels of configuration and each is capable of generating bindings in multiple additional languages.

Several dynamic analysis tools are also compatible with multi-language Rust applications. Each
is available as a plugin for Cargo, Rust’s build tool. Valgrind [Nethercote and Seward 2007] is
capable of flagging spatial and temporal memory errors, as well as incompatibilities with size and
alignment. Many of the LLVM Project’s sanitizers are also compatible with Rust [Rust Community
2024e].Miri can call foreign functions from natively compiled shared libraries using libffi[Green
2024], but only functions that take integer or floating-point arguments are supported.

3 METHODOLOGY
Our goal was to determine whether the differences between Rust and other languages lead to
undefined behavior in practice. First, we analyzed Rust libraries from crates.io to find the subset
with test cases that produce LLVM bitcode for C or C++ libraries during their build process; we
describe this stage in Section 3.1. We developed MiriLLI to analyze runs of these test cases for
undefined behavior. It combines Miri, a Rust interpreter that can detect undefined behavior, with
LLI, an LLVM interpreter provided within the LLVM toolchain [LLVM Project 2024b]. MiriLLI
uses each interpreter to jointly execute programs defined in both LLVM and Rust’s intermediate
representations. We describe the architecture of our tool in Section 3.2, and we account for several
changes that were necessary to resolve differences in semantics between Rust and LLVM. We
also include a formal model of our translation layer, which converts typed values between the
representations used by each interpreter. In Section 3.3, we report the run-time characteristics of
the test cases that we executed in our final evaluation. We describe our method for deduplicating
test outcomes to identify unique instances of undefined behavior and our approach for ethically
reporting bugs in open-source projects.

3.1 Sampling
We evaluated our design on all compatible Rust libraries with test cases that call foreign functions.
Rust libraries are referred to as “crates,” and they can be published for public use at crates.io.
We used a snapshot of the crates.io database taken on September 20th, 2023. It contained 125,804
unique crates, of which 96% (121,015) had at least one version that had not been unpublished, or
“yanked”, from the repository. Of all valid crates, 67% (84,106) compiled without intervention, and
of these crates, 36% (44,661) had unit tests and 9% (11,120) produced LLVM bitcode files, leaving 3%
(3785) crates with both unit tests and LLVM bitcode available. Our sample only includes crates that
statically link to foreign code in their default configuration. This sample does not include crates
that default to dynamic linking or statically link in non-default configurations. However, the 3785
crates we identified were more than enough to evaluate our research questions.

crates.io

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 9

We ran all unit tests from this subset of crates to determine which tests called foreign functions.
First, we natively compiled each crate to obtain a complete list of unit tests. Then, we executed
each test using an unmodified version of Miri with a timeout of 5 minutes. Of the 88,520 test cases
from crates that compiled natively, 53% (47,189) passed, 42% (36,766) failed, 4% (3869) timed out,
and 1% (1054) had been manually disabled. Tests can be disabled using the #[ignore] attribute or
with conditional compilation directives. Of the tests that failed inMiri, 63% (23,116) terminated
due to foreign function calls, making them potentially viable for use with our tool.
We executed each potentially viable test under both Stacked Borrows and Tree Borrows using

an initial build of our tool to determine which tests called foreign functions that we could execute.
Out of all 23,116 potentially viable test cases, 39% (9130) encountered a foreign function defined in
LLVM that we could execute under one or both aliasing models. These tests came from 25% (957)
of all crates with both test cases and bitcode. We used this subset of viable test cases to guide the
development of our extension and to conduct our final evaluation.

3.2 Implementation
Differences in value representation between Rust and other languages prevent Miri from supporting
foreign function calls in its current state. To validate Rust’s aliasing models, Miri represents each
pointer as a product of its address and additional provenance metadata, which is checked before
each memory access. Either instrumentation or interpretation is necessary to track and update
provenance, and there is no de facto implementation of this for foreign libraries. Other languages
may also use different calling conventions than Rust; these depend on the current architecture
and whether the foreign library is represented in an intermediate format or as native code. The
libffi library currently used byMiri can reconcile these differences at a native level, but it still
requires users to implement a high-level mapping between the types of values supported by each
language [Green 2024]. We address each of these problems by reusingMiri’s instrumentation to
interpret LLVM bytecode and by implementing a conservative, type-directed method for translating
arguments passed across foreign boundaries.

3.2.1 Execution. For our tool to function, Clang [LLVM Project 2024a] must be set as the default C
and C++ compiler and configured to emit LLVM bitcode files. Otherwise, using our tool is identical
to using an unmodified version of Miri. Before interpreting the program, we find all LLVM bitcode
files in the root directory and eagerly link them into a single module. Execution proceeds as normal
up until the point where Miri encounters a foreign function call. Normally, Miri would terminate
with an error. Our tool looks for a corresponding function definition in the LLVM module. If a
definition is found,Miri passes each of the function’s arguments through a translation layer, which
converts them into values that are compatible with the signature of the definition.

Miri is single-threaded, but it supports concurrency by non-deterministically stepping through
multiple simulated “threads” of execution. LLI did not originally support any form of multithreading,
but we modified it to be compatible with Miri’s implementation so that Miri can step through
instructions in both MIR and LLVM IR. After arguments are converted to LLVM, the current Rust
thread is set to join on a new LLVM thread which executes the function. After the LLVM thread
terminates, its return value is passed back through the translation layer and given to the Rust
thread, which continues to execute. A similar process is used when an LLVM thread calls a Rust
function. LLVM-typed arguments are passed through our translation layer and converted into
Rust arguments, and the current LLVM thread is set to join on the Rust thread. We support calling
foreign functions from parallel Rust threads, we do not support multithreading within LLVM. Only
12 test cases in our sample executed foreign functions concurrently.

10 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Fig. 4. Syntax for types and values from Rust and LLVM

Rust LLVM
𝑚,𝑛 ∈ N \ {0} 𝑏 ∈ Bytes 𝑙 ∈ Locations 𝑡 ∈ Tags

𝜏 ::= int(𝑛) | ptr | 𝜏 (LLVM types)
𝜏 ::= int(𝑛) | ∗𝜏 | 𝜏𝑝 (Rust types)

𝜏𝑝 ::= ⟨𝜏, 𝑛⟩𝑚 (Rust products)
𝜏 ::= 𝜏 | 𝜏 (Types)

𝑣𝑏 ::= 𝑏 | Pointer(ℓ, 𝜚) (Base Values)
𝑣 ::= 𝑣𝑏 | ⟨𝑣⟩ (LLVM Values)
𝑣 ::= 𝑣𝑏 (Rust Values)
𝜚 ::= 𝑡 | ∗ | · (Provenance)

Miri takes over each of LLI’s operations for accessing memory, calling external functions,
and converting between pointers and integers. We are able to detect aliasing violations without
instrumenting LLVM bitcode due to the semantics of Rust’s retag operation. Only references are
retagged; raw pointers retain the same tag across function calls. All other mechanisms of Stacked
and Tree Borrows are instrumented automatically as part of Miri’s mechanisms for accessing
memory. By treating each LLVM pointer as equivalent to a raw pointer and replacing each of Miri’s
operations, we get Miri’s error-detecting capabilities for free.

Initialization. Miri tracks which bytes are initialized in each allocation and reports an error
when uninitialized bytes are read. Even with MaybeUninit<T>, it is impossible to set a single bit
within an uninitialized byte without reading the entire byte first, which is undefined behavior.
However, we frequently observed uninitialized reads in LLVM due to this pattern. LLVM minimally
updates memory in order to preserve undef and poison values, which represent the results of
indeterminate or invalid computation and apply at the bit-level [Lee et al. 2017; McIver 2022]. If a
single bit needs to be set, instead of writing an entire byte, LLVM will load the existing, potentially
uninitialized byte, set the individual bit, and then write it back.
We treat these uninitialized reads as false positives. To avoid them, we equippedMiriLLI with

two “memory modes.” In the “Uninit” mode, we allow load operations to read uninitialized bytes.
This eliminates this category of false positives, but it prevents us from detecting when LLVM reads
uninitialized values from Rust-allocated memory. We addressed this by implementing the “Zeroed”
mode, which treats all uninitialized reads as errors but zero-initializes LLVM-allocated stack and
heap memory. This ensures that any uninitialized reads reported in foreign code are caused by
uninitialized bytes being copied from Rust-allocated memory. Test cases that read uninitialized
memory must be run twice (once in each mode) to ensure a complete evaluation, since running in
“Zeroed” prevents Miri from detecting when Rust reads uninitialized memory allocated by LLVM.
Overall, uninitialized reads occurred in 25% (2328) of all viable tests.

3.2.2 Translation. Rust’s MIR uses different calling conventions and represents values differently
than the LLVM IR emitted by Clang, so we cannot rely on a function’s definition to have the same
number or types of parameters as its binding. Our translation layer can handle nearly every ABI
difference we observed while still being capable of detecting incorrect bindings. Here, we introduce
a formal model of our translation layer. Sections A, B, and C of our Appendix include a complete
definition of this model and proofs for each of the theorems we introduce in this section.

Syntax. Wemodel the types and values defined by Rust and LLVM’s intermediate representations
using the syntax shown in Figure 4. Every type has a size, whichwe definewith the relation sizeof (𝜏)
in Section A.7 of our Appendix. Both LLVM and Rust share a set of base types and representations
for integer and floating pointer values. We represent each of these using the type int(𝑛), where 𝑛 is
its size in bytes. An integer value of type int(𝑛) is a string of 𝑛 bytes 𝑏

𝑛
. Pointers take the form

Pointer(ℓ, 𝜚), where ℓ is the address of the pointer and 𝜚 is its provenance. Every address can be

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 11

converted to a byte string of length 𝑛𝑝𝑡𝑟 , which is architecture dependent. Provenance values 𝜚 are
either concrete borrow tags 𝑡 , wildcard tags ∗, or ‘·’, which is an empty provenance value. Pointer
types are different in each language; LLVM pointers are opaque and written as ptr, while Rust’s
pointers and references take the form ∗𝜏 for some valid 𝜏 .
Products have different types and representations in each language. Rust’s product types are

lists of fields ⟨𝜏, 𝑛⟩, where 𝜏 is the type of value contained in the field and 𝑛 is the number of
padding bytes. A product value is a pointer to its first field; subsequent fields can be accessed using
the metafunction fields defined in Section A.7 of our Appendix; it offsets the pointer by the sum
of the size and padding of preceding fields. LLVM has no notion of padding, so we represent its
product types as lists of the form 𝜏 . Similarly, LLVM product values are tuples ⟨𝑣⟩. Only vectors are
represented as pointers in LLVM; both arrays and structs are lists of adjacent values in memory.
Rust products can have individual fields nested at any arbitrary depth, while LLVM types are
flattened. For example, the Rust product ⟨⟨int(1), 0⟩, 0⟩ would be represented in LLVM IR as {i1},
which is equivalent to int(1) in our formalism. Typed values that follow each of these principles
are well-formed, which we define as ⊢ 𝑣 : 𝜏 in Section A.8 of our Appendix.

State. Our value conversion judgements rely on operations that modify a store ` and a set
of provenance values 𝜎 . The store represents the shared memory accessible by each interpreter,
and it is a mapping from locations ℓ to tuples of bytes with provenance values. A value 𝑣 can be
written to the store ` at location ℓ using the judgement ` ⊢ write(ℓ, 𝑣) ⊣ `′, which produces an
updated `′ mapping ℓ and its adjacent locations to the bytes and provenance associated with 𝑣 .
As a prerequisite, we assume that each ℓ is a valid location within `. The set 𝜎 contains borrow
tags exposed by integer-to-pointer conversion. The function expose(𝜎, 𝜚) = 𝜎 ′ adds 𝜚 to 𝜎 if it is a
concrete borrow tag. The judgement for reading values is type-directed: `;𝜎 ⊢ read(ℓ, 𝜏) = 𝑣 ⊣ 𝜎 ′.
Reading a value never changes the store, but if the bytes of a pointer are read as an integer of type
int(𝑛𝑝𝑡𝑟), then 𝜎 ′ is updated to expose its provenance. After writing a typed value to the store, it
can be read from the same location:
Lemma 3.1. For all well-formed, typed scalar values 𝑣 : 𝜏 and all valid heap locations ℓ , we have:

` ⊢ write(ℓ, 𝑣) ⊣ `′ ⇒ `′;𝜎 ⊢ read(ℓ, 𝜏) = 𝑣 ⊣ 𝜎 ′

Proof (Sketch). By inversion. We cannot prove the converse, since each byte of an integer
written to the store will contain the empty provenance value, but any series of 𝑛 bytes can be read
as an integer of size 𝑛, regardless of their provenance. □

Conversion. Our value conversion judgement takes the form `;𝜎 ⊢ 𝑣 : 𝜏 ↭ 𝑣 : 𝜏 ⊣ `′;𝜎 ′, which
reads: “under the store ` and tag set 𝜎 , the typed Rust value 𝑣 : 𝜏 is interconvertible with the
typed LLVM value 𝜏 : 𝑣 , producing the updated store `′ and tag set 𝜎 ′.” This is an adaptation
of Scherer et al. [2018]’s model of interoperation, which uses a type compatibility relation ≃ and a
heterogeneous value conversion relation↔. We reason about typed values at run-time, so↭ has
the semantics of both of these relations combined.

Figure 5 shows all bidirectional conversion rules. The rule C-Int indicates that integers with the
same size are interconvertible, while C-Product requires product types to have the same number
of fields, which must also be interconvertible. The remaining conversion rules are unidirectional,
with one set for LLVM and another set for Rust. Figure 6 shows the rules for converting Rust values
to LLVM values; rules for the other direction are listed in Section A.5 of the Appendix.

Multiple ABI differences prevented us from defining every form of value conversion as a bidirec-
tional rule. Rust’s product values are pointers and LLVM’s product values are lists, so converting
values from Rust to LLVM involves reading from the store, while converting in the other direction

12 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Fig. 5. Bidirectional value conversion rules.

C-Int

`;𝜎 ⊢ 𝑏𝑛 : int(𝑛) ↭ 𝑏
𝑛
: int(𝑛) ⊣ `;𝜎

C-Product
fields(Pointer(ℓ, 𝜚) : 𝜏𝑝𝑛) = 𝑣 : 𝜏𝑝

𝑛

∀𝑖 ∈ [1, 𝑛] . `𝑖−1;𝜎𝑖−1 ⊢ 𝑣 : 𝜏𝑝 ↭ 𝑣 : 𝜏𝑖 ⊣ `𝑖 ;𝜎𝑖
`0, 𝜎0 ⊢ Pointer(ℓ, 𝜚) : 𝜏𝑝

𝑛
↭ ⟨𝑣⟩ : 𝜏𝑛 ⊣ `𝑛 ;𝜎𝑛

requires writing to the store. Additionally, we encountered 526 test cases from 70 crates required
pointers to be converted to and from integers at foreign boundaries. Converting a pointer into an
integer requires exposing its provenance, as defined in the rule C-PointerToInt. However, when
we convert an integer into a pointer, we assign it the wildcard provenance value.

We also allow any Rust value represented as a pointer to be converted into an opaque pointer in
LLVM, as defined by the Rule C-Product. However, LLVM’s product types are always passed by
value, so the equivalent rule in the other direction enforces the Rust type to be some ∗𝜏 , instead of
𝜏 . The rules C-FieldToScalar and C-ProductToInt handle LLVM’s lack of a distinction between
the value of a field and its padding. The rule FieldToScalar indicates that if a Rust field has no
padding, then is equivalent to the value it contains. Padded fields are handled by ProductToInt,
which allows products with any number of fields to be converted into integers with an equivalent
size, which includes padding bytes.
Values are only convertible if they have the same size. This is too strict to handle every valid

ABI difference. However, we did not observe any valid differences in size in our set of test cases,
and maintaining this requirement was necessary to ensure that we would always detect bindings
with integer types that had incorrect widths.
Theorem3.1. For all well-typed Rust values 𝑣 : 𝜏 and LLVMvalues 𝑣 : 𝜏 , if either value is convertible
to the other, then sizeof (𝜏) = sizeof (𝜏).

Proof (Sketch). By induction. Integers and pointers retain their width when crossing foreign
boundaries. All other types are products of these types. If a field of a Rust product value has padding,
then it can only be converted into an integer with a width equal to the size of the value and the
padding. Otherwise, the padding is zero, and the size of types match on each side of the boundary
by induction. □

Scherer et al. [2018]’s conversion and compatibility relations are functional and deterministic;
every typed value in one language is uniquely convertible into a typed value in the other language.
This does not hold for our relation; LLVM integers can be converted to pointers or products, and
Rust products can be passed by reference as pointers or by value as either integers or tuples. The
strongest property we can prove of our relation is that it is semi-functional:
Theorem 3.2 (Conversion is semi-functional). For all well-typed values 𝑣 : 𝜏 and 𝑣 : 𝜏 :

`;𝜎 ⊢ 𝑣 : 𝜏 f 𝑣 : 𝜏 ⊣ `′𝜎 ⇒ `′;𝜎 ⊢ 𝑣 : 𝜏 ⇝ 𝑣 : 𝜏 ⊣ `′𝜎 ′

Proof (Sketch). By inversion and application of Lemma 3.1. Writing a value implies that it can
be read, and conversions from LLVM write values into Rust memory, so conversions from Rust to
LLVM can read the same values back. □

Calling Conventions. If a foreign binding and its definition have the same number of parame-
ters, then passing arguments to a foreign function involves a straightforward lifting of the value
conversion judgement to lists of typed values. If the judgement gets “stuck” due to differences in

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 13

Fig. 6. Unidirectional value conversion rules from Rust to LLVM. Rules from LLVM to Rust have a similar

structure and labelling, with "From" instead of "To".

C-AnyToPointer

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏 ⇝ Pointer(ℓ, 𝜚) : ptr ⊣ `;𝜎

C-PointerToInt
ℓ ≜ 𝑏 expose(𝜎, 𝜚) = 𝜎 ′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏 ⇝ 𝑏 : int(𝑛𝑝𝑡𝑟) ⊣ `;𝜎 ′

C-FieldToScalar
`;𝜎 ⊢ read(ℓ, 𝜏) = 𝑣𝑏 ⊣ 𝜎 ′′

`;𝜎 ′′ ⊢ 𝑣𝑏 : 𝜏 ⇝ 𝑣𝑏 : 𝜏 ⊣ `;𝜎 ′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : ⟨𝜏, 0⟩ ⇝ 𝑣 : 𝜏 ⊣ `;𝜎 ′

C-ProductToInt
sizeof (𝜏𝑝) = 𝑞

`;𝜎 ⊢ read(ℓ, int(𝑞)) = 𝑏 ⊣ 𝜎 ′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏𝑝 ⇝ 𝑏 : int(𝑞) ⊣ `;𝜎 ′

size or breadth, we terminate with an error. However, LLVM supports variadic functions, while
Rust does not. Rust can declare foreign bindings with variable arguments, but functions defined
in Rust must have a fixed set of arguments. When a function is variadic, we attempt to convert
the first 𝑛 arguments corresponding to the number of fixed parameters of the function. If each of
the remaining variable arguments are pointer or integers, we convert them into equivalent types
in LLVM, with Rust pointers becoming opaque. We do not support passing products as variable
arguments since they do not have a canonical form. We use a similar mechanism for handling
arguments from LLVM to Miri’s “shim” implementations of system calls. Opaque pointers become
pointers to single bytes, unless they point to stack or static memory; in those cases, we make the
pointee type an integer equivalent to the size of the allocation.

We observed that 2% (156) of our viable test cases from 15% (140) of all crates expected to receive
individual product values through multiple parameters, with one parameter for each field. This
only occurred with homogeneous aggregates: product types where every field is identical and
lacks padding. To accommodate this pattern, we treat each field in a homogeneous aggregate as a
separate argument if the entire aggregate cannot be passed as a single parameter. We only attempt
to apply this transformation if the number of fixed parameters is greater than or equal to the
number of remaining arguments plus the number of fields in the aggregate. Since bindings may
be incorrect, this transformation is not guaranteed to be sound. However, it was rarely necessary
in practice, and combined with our additional restriction on size and breadth, we feel that it is a
reasonable compromise to achieve higher test coverage. We describe each of these transformations
using pseudocode in Section C of our Appendix.

3.3 Evaluation
We used MiriLLI to execute each of the 9130 viable test cases that we identified in Section 3.1. We
used a consistent configuration throughout this process. We overrode each crate to use version
1.74 (nightly-2023-09-25) of the Rust toolchain with the latest compatible version of Miri (1a82975).
We set the global C and C++ compilers to version 16 of Clang, and we configured it to disable
optimizations, enable debugging information, and save all temporary bitcode files. We collected
data using Amazon EC2 on-demand instances provisioned through CloudBank [Norman et al. 2021].
We used c6a.2xlarge instances during the initial stages of data collection, and then we switched
to using c6a.xlarge instances when usingMiriLLI. Miri is single-threaded, so fewer cores were
necessary to complete this task efficiently. All commands were executed on each instance in a
Docker container running Ubuntu 23.04.
We executed each viable test natively and in MiriLLI under both Stacked Borrows and Tree

Borrows. When using Tree Borrows, we treat all values of types derived from Unique, such as

https://github.com/rust-lang/rust/commit/37390d65636dd67e263753a3c04fbc60dcc4348e
https://github.com/rust-lang/Miri/commit/1a8297510e18c168667ee5239ef572405840f668

14 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Vec<T>, as having the semantics of a mutable borrow. Without this configuration option, only
Unique values in the interior of Box<T> are treated this way. We disabled isolation to allow executing
non-deterministic operations that depend on the current state of the hardware or operating system.
We also enabled symbolic alignment checking. By default, Miri will report an error if the address of
a pointer is not a multiple of the requested alignment of the type of value being read or written
through it. However, the base address of an allocation is not guaranteed to be a multiple of the
requested alignment, so it is possible for a misaligned pointer to be “aligned” by chance. Symbolic
checking avoids these false negatives by ensuring that the pointer’s offset from the base address
of the allocation is a multiple of the alignment of the value being read, and that the alignment
associated with the allocation is greater than the alignment of the value. We ignored unaligned
accesses in LLVM to prioritize detecting Rust-specific errors.

Deduplicating Errors. We reason about bugs in terms of test outcomes, where an outcome includes
the results of a single test under both Stacked Borrows and Tree Borrows. It was typical for several
tests in a given library to exhibit the same outcome. We deduplicated outcomes based on exit codes,
stack traces, and descriptive information from error logs to avoid redundant reports to developers.
Prior to deduplication, we modified error logs to remove unnecessary elements, such as references
to specific allocation identifiers, addresses, and borrow tags. We also included more or less detail in
stack traces depending on the location of an error. For foreign errors, we used the subset of the
stack trace up to the Rust boundary to avoid deduplicating errors which appeared to be identical
but were caused by mistakes at different callsites. For Rust errors, we only used the line where the
error occurred, since we did not observe errors with a root cause in LLVM.

Reporting Errors. Not all errors detectable by Miri are undefined behavior, and not all instances
of undefined behavior are readily exploitable. However, we still attempted to follow ethical vul-
nerability disclosure practices by reporting bugs privately via email before creating public reports.
When we detected a bug in a published crate, we attempted to find contact information for its
maintainers by examining the Cargo.toml file in the root of the crate and GitHub profile of its
repository’s owner. If we were unsuccessful, we logged an issue publicly. We also logged public
issues if we had not received a response after 1 month or if the type of issue did not appear to
be exploitable. For example, memory leaks are not considered undefined behavior in Rust, so we
did not report them privately. Our private reports and issues included a representative test case,
the output from MiriLLI, and a minimal example written entirely in Rust where applicable. When
the fix was trivial, we filed a pull request. Tables 3 and 4 of the Appendix include links to our
open-source contributions.

4 RESULTS
On average across each memory mode, 61% of tests terminated due to an unsupported operation,
19% passed, 10% timed out, 1% failed, and 9% had a potential bug, which includes both undefined
and undesired behaviors. Table 5 of the Appendix includes test outcomes under each configuration.
After deduplication, we had 393 errors to investigate. We manually reviewed every error and found
45 bugs in 35 Rust crates. Stacked Borrows violations were fairly common, but most were not
violations of Tree Borrows. Multiple factors lead to the number of bugs being significantly smaller
than the number of deduplicated test outcomes; our method of deduplication was conservative, we
ignored errors from crates that had been unpublished since the start of our investigation, and we
only reported Stacked Borrows violations that were also Tree Borrows violations.
Figure 1 shows the number of bugs for each error type. Bugs occurred just as frequently on

each side of the foreign boundary; 23 occurred in LLVM, 16 occurred in Rust, and 6 were related
to incorrect bindings. Of these bugs, 33 were found in crates with less than 100 average daily

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 15

Table 1. Counts of each unique error grouped by category and location. Locations are either in Rust, LLVM,

or in Rust bindings for foreign functions. The “Fix” column indicates the location where a change would be

needed to fix the bug, while the “Error” column indicates the location where the bug was reported by Miri.

Location Category
Fix Error Ownership Typing Allocation

Binding Binding - 6 -
LLVM 3 - -

LLVM LLVM 3 1 -
Rust - 2 -

Rust LLVM 15 - 1
Rust 1 3 10
Total: 22 12 11

downloads in the 6 months prior to our snapshot of crates.io. However we discovered 3 Tree
Borrows violations in separate crates which each had more than 10,000 average daily downloads,
as well as an access out-of-bounds error in libdecnumber, which is part of the GNU Compiler
Collection (GCC). The most common type of bug that we discovered were Tree Borrows violations.
The majority were caused by incorrect encapsulations or argument types in Rust, but the actual
aliasing violations occurred in LLVM.
The bugs we discovered fall into three categories. We describe Ownership errors in Section 4.1,

which include all violations of Tree Borrows and access out-of-bounds errors. Allocation errors
include both memory leaks and cross-language deallocation, which we describe in Section 4.2. We
describe Typing errors in Section 4.3, which include incorrect foreign function bindings and values
that were invalid for a given type due to errors in alignment or initialization. We use minimized
code snippets to illustrate each bug, but we provide additional details in Tables 3 and 4 of the
Appendix. At this point, 24 of the bugs we reported have been fixed, and none have been identified
as security vulnerabilities.

4.1 Ownership
We discovered 22 Ownership bugs, which include 16 Tree Borrows violations and 6 accesses out-of-
bounds. The majority were caused by incorrect arguments or encapsulations in Rust that triggered
invalid memory accesses in foreign code.

Comparison with Stacked Borrows. We found 90 tests from 37 crates that had Stacked Borrows
violations. However, 66% (59) of these tests did not have a Tree Borrows violation reoccur at the
same location. This is primarily since 76% (45) of these tests had invalid range errors, which are
no longer considered undefined behavior under Tree Borrows. Table 2 shows these test outcomes
after being deduplicated. The count before a “/” is the number of unique errors, while the count
after is the number of crates where they occurred. The columns under “Error or Failure Under Tree
Borrows" indicate whether representative test cases also had a Tree Borrows violation.

In addition to range violations, Tree Borrows’ handling of retags also had a significant effect on
our results. Recall that under Stacked Borrows, a retag that creates a unique, mutable permission
will perform a write access as a side effect using the permission it was derived from, which
may invalidate other mutable permissions. However, under Tree Borrows, retags are always read
accesses, regardless of the type of permission being created. Accordingly, we observed that a subset
of expired permissions errors caused by unique retags were no longer undefined behavior under
Tree Borrows. Insufficient permission and invalid framing errors that did not reoccur under Tree
Borrows were also caused by writes that were triggered as side-effects of retags.

16 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Table 2. Counts of deduplicated tests with Stacked Borrows errors and their crates (tests / crates) as well as

outcomes for the same tests under Tree Borrows.

Error or Failure Under Tree Borrows
SB Error Type Count None Non-TB TB, Same Loc. TB, Diff. Loc.

Expired (Unique Retag) 18/12 2/2 1/1 11/9 4/1
Expired (Write) 4/1 - - 4/1 -
Insufficient 20/13 5/3 - 15/10 -
Invalid Framing 3/2 - - 1/1 2/1
Out of bounds 45/10 27/8 2/2 - 16/3

Const-Correctness. There were 9 Tree Borrows errors caused by incorrect casts from immutable
references to mutable raw pointers. The following snippet is a minimal example of Bug 41, which
used an explicit cast:
1 pub fn as_ffi(&self) -> *mut T {

2 self.data.as_ref() as *const T as *mut T

3 }

The type T encapsulated a heap object containing state for a foreign library. The function as_ffi

was used to access a raw pointer to this object, which would be passed to a foreign function. The
expression data.as_ref() produces an immutable reference to data, which is then cast to a const

pointer and again to a mut pointer. However, it still retains the Frozen permission derived from the
immutable reference, so mutating this structure across the FFI caused an insufficient permission
error. This error is equivalent to the example shown in Figure 2b. We found 5 bugs with equivalent
errors, which we label as “&T as *mut T in Table 4 of the Appendix.
We found instances where a pointer was incorrectly declared as const in a foreign function

binding. In each case, the underlying function definition was correct, but the maintainer had made
an error in writing the binding by hand. The mechanism for these errors is the same as in the
definition of as_ffi above, but the cast occurred implicitly when the pointer crossed the foreign
boundary. These bugs are labelled “Incorrect const” in our Appendix.

Several of these errors can be detected by Clippy using the lint as_ptr_cast_mut, but it is still
in development, so it is disabled by default [Rust Community 2022]. Clippy may also produce
false positives in Rust libraries that require foreign bindings to match their definitions. C and C++
developers do not always declare types with const qualifiers where applicable [Davidoff 2019],
so it may be necessary and sound to cast an immutable reference into a raw pointer if a foreign
function call will only use it to read memory.

Self-Reference. In Rust, it is not possible to implement a struct where one field contains a reference
to another field without using unsafe; allowing this could lead to use-after-free errors depending
on the order in which each field is dropped. It is possible, but non-trivial, to implement this pattern
using unsafe operations [Goregaokar 2022]. Bug 36 demonstrates how a self-referential pattern can
be implemented incorrectly. We found this bug in an encapsulation of a C library that implements
a minimal file system for embedded applications. Its API used separate structs to represent the
state of the file system and its configuration. The configuration held a mutable reference to the
state, but both objects were contained in a single parent struct representing the entire file system.
Rust held a single mutable reference to the parent struct, which was invalidated when the state
was mutated through the configuration during a foreign function call.

We model this with a minimal example in Figure 7. The parameter x is declared as a mutable
reference to a tuple of type &mut State on Line 2. The type State is an alias for a tuple of type

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 17

Fig. 7. A minimal example of Bug 35: a Tree Borrows violation caused by an incorrect implementation of

a self-referential pattern. The tables on the righthand side corresponds to the subtree of permissions for

location of the field “x.0” before (to the left of the arrow) and after (to the right of the arrow) the write access

on Line 5. The table on top corresponds directly to the snippet on the left, while the table on the bottom

describes the tree after we apply our fix, which replaces the first field of State with UnsafeCell<i32>.

1 type State = (i32, *mut i32);

2 fn ub(x: 1 &mut State) {

3 x.1 = 2 &mut x.0 as *mut _;

4 let r = 3 &mut *x;

5 unsafe{ (*r.1) = 1; }

6 drop(r);

7 }

Active 1
Reserved → Active 2
Reserved → Disabled 3

Reserved
∗ → Active 1
Reserved

∗ 2

(i32, *mut i32) representing the self-referential struct; the first field represents the state, and the
second field represents the configuration’s reference to the state. The second field x.1 is initialized
on Line 3 with a raw pointer cast from a mutable reference to the first field. Since this pointer was
originally a mutable reference, it holds the Reserved permission indicated by 2 . On Line 4, x is
reborrowed to create a new mutable reference that is assigned to the variable r, which represents
the mutable permission held by Rust prior to the foreign function call. Similar to x.1, this also
receives a reserved permission indicated by 3 .
The table at the top of the righthand side of Figure 7 represents the state of the borrow tree

before and after Line 5. Multiple Reserved permissions are present at the same depth in the tree,
so whichever is used first for a write access will invalidate the other. In this case, x.1 is written
through, causing permission 2 to become Active and disabling permission 3 . Any further use of
r is an insufficient permission error. We use drop as a placeholder for the function that triggered
the error with a function-entry retag, which attempted to perform a read access using 3 .

We fixed this bug by wrapping relevant parts of state in an UnsafeCell. In this example, it would
be equivalent to changing the first field of State to be UnsafeCell<i32> and replacing the expression
being assigned to x.1 on Line 3 to x.0.get(), which immutably borrows through UnsafeCell<i32>

to create a raw pointer. The table at the bottom of the righthand side of Figure 7. illustrates how
this change affects the tree. References to UnsafeCell<T> inherit the permission being borrowed
against, so the Active permission 1 now applies to both x and x.1. Mutably borrowing a location
covered by UnsafeCell<T> creates a special Reserved∗ permission that can tolerate foreign writes.
Consequentially, the permission held by r is no longer disabled by the write on Line 7, so the read
access on Line 6 is no longer undefined behavior.
The fix we applied for Bug 35 will not work for every self-referential pattern, since UnsafeCell

only allows shared mutable state through immutable references. The library in question used a
mutable borrow to represent unique, read access to the parent struct from the Rust side of the
boundary, and it was the only active mutable borrow against this location for the duration of the
program. Even with the fix that we applied, mutably borrowing from the location referenced by x

in Figure 5 would invalidate that pointer held by x.1, leading to another expired permission error.

Shared Mutability. It was more typical for each side of the boundary to assert mutable access
through a single, unique permission. This bug pattern begins when a foreign function receives a
raw pointer with a Reserved permission, indicating that it has been cast from a mutable reference.
Unbeknownst to the caller, this pointer is copied by the foreign function and stored in memory

18 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Fig. 8. A minimal example of the cyclic aliasing pattern that we observed in Bugs 33 and 36.

1 #[repr(C)]

2 struct Stream {

3 state: *mut State,

4 }

5 #[repr(C)]

6 struct State {

7 strm: *mut Stream,

8 }

9 struct Compression {

10 strm: Box<Stream>

11 }

12 fn initialize() -> Compression {

13 let mut strm = Box::new(zeroed());

14 unsafe { ffi:init(strm.as_mut()); }

15 Compression { strm }

16 }

1 void init(Stream* strm) {

2 State* s = malloc(sizeof(State);

3 s->strm = strm;

4 strm->state = s;

5 }

that remains valid after the call returns. Then, the location is mutably borrowed again on the Rust
side of the boundary. Similar to Bug 35, there are two adjacent Reserved branches in the tree; one
held on each side of the boundary. When one of these permissions is used to write memory, the
other is invalidated, leading to an expired permission error when the invalid permission is used.
We observed this type of bug in 4 separate libraries. The most notable examples were Bug 33

from bzip2 and Bug 36 from flate2, which are both popular compression libraries. In particular,
flate2 is actively maintained by the Rust project and had more than 130,000 downloads per day
on average during our observation period. Both libraries created a cyclic aliasing pattern between a
struct representing the data stream and a struct representing the current state of the compression or
decompression algorithm. Figure 8 shows a minimal example of the initialization pattern that lead
to this error in each crate. The Rust function initialize creates a Compression object by allocating
its memory through Box and passing a mutable reference to the Box across the FFI to init: a foreign
function exposed by the C API. This function initializes the Compression object with a pointer to a
newly-allocated State instance. It also and stores the pointer it received to the allocation of the
Compression object within the State instance, forming a cyclic structure. This makes it unsound
to mutably borrow the Compression object for the duration of the program, lest it invalidate the
reference held by State.
The solution for each of these errors was to unwrap the Box using into_raw() and store a

raw pointer to the allocation within the Compression struct. We modified the API so that any
access to Compression would use a raw pointer with the same permission as the pointer held
within State, ensuring that the cyclic structure remains valid. Since the raw pointer was exposed,
we also had to modify the implementation of Drop for the parent struct to rewrap this pointer
using Box::into_raw(), ensuring that it would be deallocated when Compression leaves scope. Raw
pointers can be copied freely without creating new permissions, so this ensured that each side of the
boundary mutated the memory using the same capability. Regrettably, this increased the amount
of unsafe code on the Rust side, since we could not convert this pointer into &mut Compression

without invalidating the pointer held by C.
Bug 37 did not have a cyclic structure, but both the cause of the error and our solution were

identical. However, Bug 34 required a different approach. It was found in the same file system
library as Bug 36, which avoided use of heap allocations as a constraint of the embedded application
context. Instead of a Box, the Rust encapsulation stored a mutable reference to a stack allocation.
The equivalent “unwrapping” operation for a reference to stack memory is the addr_of_mut!macro,
which will also produce a raw pointer to the root permission of the tree.

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 19

Framing. We found one framing violation that was equivalent to the example in Figure 2d. In
Bug 26, a Rust function attempted to grow a heap-allocated array of values using a foreign function
call. The Rust function received a mutable reference to an allocation of type &'static mut [T],
which was converted into a raw pointer to the first element of the array and passed to the foreign
function. However, this reference was given a protected, Reserved permission by a function-entry
retag. Reallocation is equivalent to deallocation under Tree Borrows, so when this pointer was
passed to the foreign function and used to reallocate the array, its protected permission was disabled,
which is undefined behavior. It was fixed by changing the function to receive a raw pointer, which
is not retagged on function entry, instead of a reference.

PhantomData. Rust’s PhantomData<T> is typically treated as equivalent to an instance of T, but
this does not currently apply when T is equivalent to UnsafeCell<U> for some type U. Tree Borrows
considers any part of a struct to be interior mutable if only one field is interior mutable, but this
field must be a concrete instance of UnsafeCell<T>; it cannot be PhantomData<UnsafeCell<T>> [Jung
2020]. Bug 32 involved an instance where involved an instance where PhantomData<UnsafeCell<T>>
was incorrectly assumed to provide interior mutability. It was found in a library which providing
an API for encapsulating foreign, opaque types in Rust. This included the following definition of
the type Opaque, which was used to derive references to opaque foreign types.
1 struct Opaque(PhantomData<UnsafeCell<*mut ()>>);

2 fn as_ptr(&self) -> *mut Self::CType;

Since Opaque did not contain a concrete instance of UnsafeCell, the pointer produced from &self

in the implementation of as_ptr did not have interior mutability, so all writes through it were
undefined behavior. The relationship between PhantomData and UnsafeCell is not yet settled, so it
is possible that this will become defined behavior in a future version of Tree Borrows.

Access Out-of-Bounds. We found 6 access out-of-bounds errors in unique crates. Bug 20 was
found in two separate Rust encapsulations for libdecnumber, which is part of the GCC toolchain.
This library often used the following pattern to iterate over arrays of integers:
1 for (; *current_element==0 && current_element+3<end_of_array;) current_element+=4;

The first term in the conditional will execute before the second term, but if the second term is false,
then the first term is an access out-of-bounds. This was fixed by swapping the order of each term.
Bug 25 was found in a disassembler which incorrectly implemented several instructions, leading to
an access out-of-bounds into adjacent static arrays. This error was fixed once the correct semantics
were implemented.

Neither of these bugs meaningfully involved Rust. However, the remaining 3 errors were caused
by Rust encapsulations that did not adequately enforce the preconditions required by foreign
function calls. Bug 21 involved the following API, which redirected its arguments to foreign
functions based on the value of key_size:
1 fn key_expansion(expanded_key: &mut [u8], key: &[u8], size: KeySize)

For example, KeySize::K128 would call a foreign function expecting expanded_key and enc_key to
have 128 bytes. However, this function did not validate whether the length of each key matched
the provided KeySize. This made it possible to cause an access out-of-bounds error by passing a
KeySize that was larger than the length of the keys.

Bug 24 involved a foreign function that expected a pointer to a string with 6 characters. This was
allocated with CString::new(Vec::with_capacity(6)), exposed as a raw pointer using into_raw(),
and correctly deallocated after the call using from_raw(..). The implementation of CString::new
appends a null-terminator the the vector and then converts it into a value of type Box<[u8]> using

20 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

into_boxed_slice() which shortens the capacity of the vector to be equal to its length. While its
capacity is 6, its length is 1. The encapsulation did not validate that the length of the CString

instance was correct, leading to an access out-of-bounds when the C codebase attempted to read
beyond the first character of the string.

4.2 Allocation
Issues related to memory leaks or incorrect deallocation were the second most common type of
bug that we encountered. We found 10 memory leaks and 1 new cross-language deallocation bug.

Memory Leaks. Several Rust types that encapsulate heap allocations, such as Box<U> and CString,
have similar APIs. An instance of one of these types is produced with T::new(..), which creates an
allocation that is deallocated by T::drop() when the value leaves scope. A raw pointer to the heap
allocation can be obtained using T::into_raw(..), which consumes an instance of T to produce
a raw pointer. To avoid a memory leak, this pointer must be reconstituted in its wrapper type
using T::from_raw(..). There were 4 leaks caused by calling into_raw(..) on either Box<T> and
CStringwithout later calling from_raw(..). In each case, the type was used to allocate memory for a
foreign function call. These bugs were easily fixed by adding calls to T::from_raw in the appropriate
locations. We also encountered 6 bugs involving leaks of memory allocated by C. This was typically
due to neglecting to call a destructor function which had already been exposed by the C API and
bound in Rust. However, in Bug 11, the C API did not expose a destructor; it had been designed
with the assumption that consumers would be able to call free.

Cross-Language Deallocation. We found one example of invalid cross-language deallocation. In
Bug 4, a pointer to a heap-allocated string was returned to Rust by a foreign function call and stored
as a Cow<&'static [u8]>, which will lazily clone its data when mutated. This wrapper type is an
enumeration with two variants; Cow::Borrowed receives a reference to a value, while Cow::Owned

takes ownership of a value, deallocating it when it goes out of scope. When this Cow was dropped,
it deallocated the C heap memory using Rust’s allocator. There was not an immediate fix for this
bug, since the C API did not expose a destructor.

4.3 Typing
We encountered 11 bugs from 5 crates involving values which were invalid for a given type due
to partial initialization or invalid alignment. Most of these bugs were caused by invalid use of
MaybeUninit<T>, but several involved incorrect foreign function bindings.

Incomplete Initialization. There were 4 bugs involving partial initialization of MaybeUninit<T>.
Bugs 43 and 44 were each found in the same library. In each case, an uninitialized instance of a
struct T containing an array of values was created using MaybeUninit<T> and passed across the
FFI to be initialized. We provide a minimal example of this bug in Figure 9. The foreign call only
initialized the first element of the array to 0. The remaining uninitialized elements would never be
read by C, since every iteration stopped at the null terminator. However, MaybeUninit<T> requires
every byte of T to be initialized, or else calling assume_init() is instantaneous undefined behavior.
Miri reported these initialization patterns as an error, and we fixed each bug by zero-initializing
the entire array in Rust.
Bug 45 was found in a library that used a similar pattern for initializing foreign structs. Each

struct had several padding fields which were never initialized on either side of the boundary. Unlike
Bugs 43 and 44, zero-initializing the padding fields in Rust prior to the foreign call did not fix the
issue. After examining the LLVM bytecode for the initialization function, we found that all writes
to the padding fields had been removed, even with optimizations disabled.

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 21

Fig. 9. A minimal example of Bugs 43 and 44.

1 let mut d = MaybeUninit::<[u32;2]>::uninit();

2 let d = unsafe {

3 ffi::init(d.as_mut_ptr() as *mut u32);

4 d.assume_init()

5 };

1 void init(uint32_t * x) {

2 *data = 0

3 }

Fig. 10. A minimal example of Bug 45. The function reset is implemented in C (left) and in LLVM IR (right).

1 i32 reset(state_t* s) {

2 memset(s, 0, sizeof(*s));

3 return 0;

4 }

1 define i32 @reset(ptr %0) {

2 %1 = alloca %struct.state_t

3 call void @memset(ptr %1, i8 0, i64 88)

4 call void @memcpy(ptr %0, ptr %1, i64 80)

5 ret i32 0

6 }

Figure 10 shows minimal implementations of the initialization function reset in C and LLVM IR.
An instance of the struct state_t is passed by reference as the first argument and zero-initialized
with memset. The width of state_t is 88 bytes, but the last 8 bytes correspond to its padding fields.
On the lefthand side, the C implementation appears to fully initialize its argument using memset

on Line 2. When lowered to LLVM, the call to memset on Line 3 still fully initializes all 88 bytes of
state_t stored in register %1. However, only 80 bytes are copied out of this struct on Line 4; the
padding fields are left uninitialized. If %0 contains a pointer to an instance of MaybeUninit<state_t>,
then calling assume_init() on this instance after reset returns is undefined behavior. We fixed
Bug 45 by zero-initializing the padding fields after reset returned and before calling assume_init().

Incorrect FFI Bindings. We encountered 6 crates with one or more incorrect foreign function
bindings. All bindings from each crate had been written manually. Three of these crates had bindings
with missing return types. In Bug 6, a binding was declared in a unit test without its 32-bit integer
return type. The C implementation used this to return a status code indicating if one of its integer
parameters was within bounds. The remaining two bugs involved bindings with incorrect integer
types, which lead to incomplete initialization. In Bug 7, a function was declared to return a 32-bit
integer, but its C implementation returned a 1-byte boolean value. In Bug 8, the last parameter of a
function was declared as a 32-bit integer, but the C implementation expected a size_t. The width
of size_t is architecture dependent, so this binding was only correct for 32-bit architectures.

5 DISCUSSION
Our findings indicate that it is necessary to be aware of the aliasing patterns of foreign libraries to
correctly encapsulate them in Rust. Errors that we identified can be prevented through adequate
testing, linting, and auditing. However, it is likely that many will persist, undetected, until the Rust
community develops a production-ready method for detecting undefined behavior across foreign
function boundaries. We provide the following recommendations:

For Rust Developers. Awareness is key to avoiding improper use of unsafe features. Developers
who depend on foreign code either directly or indirectly should validate their tests cases with
language-agnostic bug-finding tools such as LLVM’s sanitizers or Valgrind, since several of the

22 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

bugs we identified involving memory leaks (e.g Bug 11) and accesses out-of-bounds (e.g. Bug 25)
can also be detected using those tools. Developers who have written foreign function bindings
should consider that the infrequent cost of generating and committing bindings may be preferable
to writing them by hand without assistance, which evidently is error-prone. When calling foreign
functions, developers must be aware of where each object was created, whether it has one or many
active references, whether these references are on each side of the foreign boundary, and which
capabilities they must have. Each of these attributes can dramatically influence the correct design
for an encapsulation. For example Bug 35 was fixable with an UnsafeCell<T> since write accesses
only occurred in C, while Bugs 36 and 33 required a different approach, since each side of the
boundary needed write access.

For The Rust Project. The Rust community is in dire need of a production-ready solution for
validating Rust’s aliasing model across foreign function boundaries. Though our approach was
capable of finding useful results, it is not likely to scale due to the requirement of implementing shims
for system calls and the lack of a formal specification of the ABIs implemented by Rust and Clang.
Instrumenting a shared, intermediate format is likely to be the most effective approach. The Rust
community should invest resources into completing a prototype implementation of Krabcake [Klock
and Garza 2023] to evaluate on real-world applications. However, Valgrind [Seward and Nethercote
2005] can incur significant runtime overhead, so it may also be worthwhile to develop an equivalent
approach using LLVM’s Sanitizer API. Targeted static analysis will also help developers avoid
aliasing violations at foreign boundaries. Binding generation tools would benefit from static analysis
to provide recommendations on how to create correct encapsulations. Functions that initialize
memory could be audited to ensure correct use of MaybeUninit<T>, and warnings could be issued
for functions that retain copies of the pointers that they receive.

6 RELATEDWORK
Foreign function calls are a common use case for unsafe code, but they have been overlooked in
empirical studies and tool-building efforts due to the complexity of interoperation.

Surveys of the Rust Ecosystem. Studies that examined unsafe code in Rust libraries have con-
sistently found that foreign function calls are a significant use-case for unsafe code [Astrauskas
et al. 2020; Evans et al. 2020]. In particular, Evans et al. [2020] surveyed all published crates in
September, 2018 and found that 22.5% of all unsafe function calls were to foreign functions. Rust
developers also view foreign function calls as a central use case for unsafe code. Fulton et al. [2021]
interviewed 16 Rust developers and surveyed 178 developers, finding that nearly half of participants
interoperated with C, C++ and Python. C was seen as easier to interoperate with than C++, which
participants found had complex aliasing patterns. Höltervennhoff et al. [2023] focused specifically
on Rust developers who use unsafe code and found that all but one of 26 interview participants
had used the FFI. Four participants found that it was typically easy to encapsulate foreign calls, but
two noted that memory management was difficult across foreign boundaries. McCormack et al.
[2024] conducted a mixed-method study of developers who engaged with unsafe code. Most of
their interview participants struggled with differences between Rust and foreign memory models,
and few survey participants avoided creating references to foreign memory.

Types of Bugs & Undefined Behavior. Prior studies have examined bug reports, CVEs, and com-
ments to categorize the errors that occur when unsafe code is used incorrectly. Most considered
foreign function calls to be out-of-scope, and none described aliasing violations in terms of Rust’s
Stacked Borrows [Jung et al. 2019] or Tree Borrows [Villani et al. 2023] models. Both Qin et al.
[2020] and [Xu et al. 2021] examined bug and vulnerability reports from prominent, open source

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 23

projects and found examples of allocation and typing errors that are similar to the ones that we
identified. We mirror Qin et al. [2020]’s approach to categorizing bugs based on their “Cause” and
“Effect” with our definitions of “Fix” and “Error.” Xu et al. [2021] did encounter errors related to
FFI use, but they were primarily “straightforward” issues related to either application-specific
invariants, layout, and alignment. Cui et al. [2023b] evaluated a taxonomy of 19 safety properties
required by unsafe design patterns, but they made it an explicit goal to “disregard” the the FFI to
“avoid unnecessary complexities.”

Rust-specific Bug-finding Tools. Abstract interpretation [Cousot and Cousot 1977] has proven
effective at detecting a wide variety of memory and thread-safety issues related to improper use
of unsafe code, such as panics, ownership violations, invalid frees, and unsound use of generic
types [Bae et al. 2021; Cui et al. 2023a; Li et al. 2021; Qin et al. 2020]. However, each of these
approaches targeted Rust’s MIR. Several Rust bug-finding tools have supported multi-language
applications by translating each language into a shared intermediate format. Li et al. [2022] applied
dataflow analysis on LLVM IR and detected several memory leaks and cross-language deallocation
errors in Rust libraries. Hu et al. [2022] modified several existing Rust analysis tools, including
Miri, to analyze programs defined in a custom intermediate representation based on Rust’s MIR.
However, they did not evaluate their approach on any real Rust libraries, and aliasing violations
were not included in their evaluation. [Xia et al. 2023] took a similar approach using WebAssembly
as a shared, intermediate language; their evaluation did not use Miri. The Krabcake project [Klock
and Garza 2023] is developing an extension to Valgrind [Seward and Nethercote 2005] that will add
support for validating natively-compiled applications against Rust’s aliasing models. However, it is
not yet usable, and considerable differential testing [McKeeman 1998] will be necessary to ensure
that it produces equivalent results to Miri.

Verification. Few approaches to formally verifying Rust have support for any unsafe features.
Deductive verifiers [Astrauskas et al. 2019; Denis et al. 2022] and refinement type checkers [Lehmann
et al. 2023] have targeted its Rust’s safe subset, leveraging the guarantees of the borrow checker to
reduce annotation burden. Additionally, Yanovski et al. [2021] and Lattuada et al. [2023] have used
linear ghost types to support validating a subset of unsafe patterns, such as raw heap allocations
and UnsafeCell<T>. Recent approaches based on the RustBelt [Jung et al. 2017] model of Rust’s
operational semantics have used compositional verification [Élie Ayoun et al. 2024] and automated
proof search [Gäher et al. 2023] to directly support unsafe features. However, neither can validate
unsafe code against Tree Borrows.

Formal Semantics. Matthews and Findler [2007] first explored static soundness for multi-language
applications and introduced the concept of “embedding” values from one language at a different
type in another language using boundary forms. Scherer et al. [2018] use a modified form of this
approach to create a sound composition of ML and a linear language. Patterson et al. [2022]’s
approach models modern compilation strategies by relying on the presence of an intermediate
representation, analogous to LLVM IR, that is shared by each language. We considered modeling
our formalism after this approach, but we lack an intermediate language between LLVM and Rust,
and treating LLVM as both a target language and an intermediate language would be cumbersome.

7 CONCLUSION
We combined Miri, a Rust interpreter, with LLI, an LLVM interpreter, to create MiriLLI: a tool
which can jointly execute programs defined in each language to detect undefined behavior across
foreign function boundaries. We conducted a large-scale evaluation of our tool on Rust libraries
that call foreign functions, and we identified 45 unique bugs from 35 libraries. Bugs were related

24 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

to ownership, initialization, and typing, but the most common types of bugs were violations of
Rust’s Tree Borrows aliasing model. These were typically caused by unsound patterns in Rust that
triggered errors in foreign code. Developers can take immediate steps to avoid these errors by
documenting the aliasing patterns of foreign libraries and auditing their use of reference types at
foreign boundaries. To ensure that these errors are easy to detect, the Rust project should invest in
new approaches to static and dynamic analysis that can accommodate multi-language applications.

DATA-AVAILABILITY STATEMENT
MiriLLI is available on GitHub1.

REFERENCES
Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J. Summers. 2020. How Do Programmers

Use Unsafe Rust? Proc. ACM Program. Lang. 4, OOPSLA, Article 136 (nov 2020), 27 pages. https://doi.org/10.1145/3428204
V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. 2019. Leveraging Rust Types for Modular Specification and Verification,

In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). Proc. ACM Program. Lang. 3, OOPSLA,
147:1–147:30. https://doi.org/10.1145/3360573

Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. 2021. Rudra: Finding Memory Safety Bugs
in Rust at the Ecosystem Scale. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New York, NY, USA, 84–99. https:
//doi.org/10.1145/3477132.3483570

Andrew Cann and Rust Community. 2017. extern_types - RFC #1861. https://rust-lang.github.io/rfcs/1861-extern-types.html
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238–252. https://doi.org/10.1145/512950.512973

Will Crichton. 2020. The Usability of Ownership. CoRR abs/2011.06171 (2020). arXiv:2011.06171 https://arxiv.org/abs/2011
.06171

Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. 2023a. SafeDrop: Detecting Memory Deallocation Bugs of
Rust Programs via Static Data-flow Analysis. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 82 (may 2023), 21 pages.
https://doi.org/10.1145/3542948

Mohan Cui, Suran Sun, Hui Xu, and Yangfan Zhou. 2023b. Is unsafe an Achilles’ Heel? A Comprehensive Study of Safety
Requirements in Unsafe Rust Programming. arXiv:2308.04785 [cs.SE]

Sergey Davidoff. 2019. New lint: ‘_.as_ptr() as ∗mut _‘ is Undefined Behavior. https://github.com/rust- lang/rust-
clippy/issues/4774

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verification of Rust
Programs. In Formal Methods and Software Engineering, Adrian Riesco and Min Zhang (Eds.). Springer International
Publishing, Cham, 90–105.

Sacha Élie Ayoun, Xavier Denis, Petar Maksimović, and Philippa Gardner. 2024. A hybrid approach to semi-automated Rust
verification. arXiv:2403.15122 [cs.PL]

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust Used Safely by Software Developers?. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for
Computing Machinery, New York, NY, USA, 246–257. https://doi.org/10.1145/3377811.3380413

Clive D.W. Feather. 2004. DR260 - indeterminate values and identical representations. https://www.open-std.org/jtc1/sc22/
wg14/www/docs/dr%5F260.htm

Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and Michelle L. Mazurek. 2021. Benefits and Drawbacks of
Adopting a Secure Programming Language: Rust as a Case Study. In Proceedings of the Seventeenth USENIX Conference on
Usable Privacy and Security (SOUPS’21). USENIX Association, USA, Article 31, 20 pages. https://www.usenix.org/confe
rence/soups2021/presentation/fulton

Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. 2023. RefinedRust: Towards high-assurance
verification of unsafe Rust programs. Rust Verification Workshop. https://people.mpi-sws.org/~gaeher/slides/refinedru
st%5Frw23.pdf Accessed: 2023-10-20.

Rakesh Ghiya, Daniel Lavery, and David Sehr. 2001. On the importance of points-to analysis and other memory disambigua-
tion methods for C programs. SIGPLAN Not. 36, 5 (may 2001), 47–58. https://doi.org/10.1145/381694.378806

1https://github.com/icmccorm/mirilli

https://doi.org/10.1145/3428204
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3477132.3483570
https://doi.org/10.1145/3477132.3483570
https://rust-lang.github.io/rfcs/1861-extern-types.html
https://doi.org/10.1145/512950.512973
https://arxiv.org/abs/2011.06171
https://arxiv.org/abs/2011.06171
https://arxiv.org/abs/2011.06171
https://doi.org/10.1145/3542948
https://arxiv.org/abs/2308.04785
https://github.com/rust-lang/rust-clippy/issues/4774
https://github.com/rust-lang/rust-clippy/issues/4774
https://arxiv.org/abs/2403.15122
https://doi.org/10.1145/3377811.3380413
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr%5F260.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr%5F260.htm
https://www.usenix.org/conference/soups2021/presentation/fulton
https://www.usenix.org/conference/soups2021/presentation/fulton
https://people.mpi-sws.org/~gaeher/slides/refinedrust%5Frw23.pdf
https://people.mpi-sws.org/~gaeher/slides/refinedrust%5Frw23.pdf
https://doi.org/10.1145/381694.378806
https://github.com/icmccorm/mirilli

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 25

Manish Goregaokar. 2022. Not a Yoking Matter (Zero-Copy #1). https://manishearth.github.io/blog/2022/08/03/zero-copy-
1-not-a-yoking-matter/

Anthony Green. 2024. libffi. https://sourceware.org/libffi/
Sandra Höltervennhoff, Philip Klostermeyer, Noah Wöhler, Yasemin Acar, and Sascha Fahl. 2023. “I wouldn’t want

my unsafe code to run my pacemaker”: An Interview Study on the Use, Comprehension, and Perceived Risks of
Unsafe Rust. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 2509–2525.
https://www.usenix.org/conference/usenixsecurity23/presentation/holtervennhoff

Shuang Hu, Baojian Hua, Lei Xia, and Yang Wang. 2022. CRUST: Towards a Unified Cross-Language Program Analysis
Framework for Rust. In 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). Institute
of Electrical and Electronics Engineers, New York, NY, USA, 970–981. https://doi.org/10.1109/QRS57517.2022.00101

ISO/IEC. 2017. Information technology – Programming languages – C.
ISO/IEC. 2023. Working Draft, Standard for Programming Language C++.
Ralf Jung. 2020. Stacked Borrows: How precise should UnsafeCell be tracked? https://github.com/rust-lang/unsafe-code-

guidelines/issues/236
Ralf Jung. 2021. Undefined Behavior deserves a better reputation. https://blog.sigplan.org/2021/11/18/undefined-behavior-

deserves-a-better-reputation/
Ralf Jung. 2024. Rust Has Provenance. https://github.com/rust-lang/rfcs/pull/3559
Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked Borrows: An Aliasing Model for Rust. Proc.

ACM Program. Lang. 4, POPL, Article 41 (Dec. 2019), 32 pages. https://doi.org/10.1145/3371109
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: securing the foundations of the Rust

programming language. Proc. ACMProgram. Lang. 2, POPL, Article 66 (dec 2017), 34 pages. https://doi.org/10.1145/3158154
Steve Klabnik and Carol Nichols. 2022. The Rust Programming Language. https://doc.rust-lang.org/book/.
Felix S. Klock and Bryan Garza. 2023. Krabcake: A Rust UB Detector. Rust Verification Workshop. https://pnkfx.org/presen

tations/krabcake-rust-verification-2023-april.pdf Accessed: 2023-10-20.
Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and

Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7, OOPSLA1,
Article 85 (apr 2023), 30 pages. https://doi.org/10.1145/3586037

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.
Lopes. 2017. Taming undefined behavior in LLVM. SIGPLAN Not. 52, 6 (jun 2017), 633–647. https://doi.org/10.1145/3140
587.3062343

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. 2023. Flux: Liquid Types for Rust. Proc. ACM Program. Lang. 7,
PLDI, Article 169 (jun 2023), 25 pages. https://doi.org/10.1145/3591283

Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021. MirChecker: Detecting Bugs in Rust Programs
via Static Analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
(Virtual Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New York, NY, USA, 2183–2196.
https://doi.org/10.1145/3460120.3484541

Zhuohua Li, JinchengWang, Mingshen Sun, and John C. S. Lui. 2022. Detecting Cross-language Memory Management Issues
in Rust. In Computer Security – ESORICS 2022 (Lecture Notes in Computer Science), Vijayalakshmi Atluri, Roberto Di Pietro,
Christian D. Jensen, and Weizhi Meng (Eds.). Springer Nature Switzerland, Cham, 680–700. https://doi.org/10.1007/978-
3-031-17143-7_33

LLVM Project. 2024a. Clang: a C language family frontend for LLVM. https://clang.llvm.org/.
LLVM Project. 2024b. LLVM Documentation. https://llvm.org/docs/index.html
Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. SIGPLAN Not. 42, 1

(jan 2007), 3–10. https://doi.org/10.1145/1190215.1190220
Ian McCormack, Tomas Dougan, Sam Estep, Hanan Hibshi, Jonathan Aldrich, and Joshua Sunshine. 2024. "Against the

Void": An Interview and Survey Study on How Rust Developers Use Unsafe Code. arXiv:2404.02230 [cs.SE]
John McIver. 2022. [RFC] Load Instruction: Uninitialized Memory Semantics. https://discourse.llvm.org/t/rfc-load-

instruction-uninitialized-memory-semantics/67481/1
William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. J. 10, 1 (1998), 100–107. https://www.hpl.hp.c

om/hpjournal/dtj/vol10num1/vol10num1art9.pdf
Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, and Peter

Sewell. 2019. Exploring C semantics and pointer provenance. Proc. ACM Program. Lang. 3, POPL, Article 67 (jan 2019),
32 pages. https://doi.org/10.1145/3290380

Mozilla. 2024. The UniFFI user guide. https://mozilla.github.io/uniffi-rs/.
Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.

SIGPLAN Not. 42, 6 (jun 2007), 89–100. https://doi.org/10.1145/1273442.1250746

https://manishearth.github.io/blog/2022/08/03/zero-copy-1-not-a-yoking-matter/
https://manishearth.github.io/blog/2022/08/03/zero-copy-1-not-a-yoking-matter/
https://sourceware.org/libffi/
https://www.usenix.org/conference/usenixsecurity23/presentation/holtervennhoff
https://doi.org/10.1109/QRS57517.2022.00101
https://github.com/rust-lang/unsafe-code-guidelines/issues/236
https://github.com/rust-lang/unsafe-code-guidelines/issues/236
https://blog.sigplan.org/2021/11/18/undefined-behavior-deserves-a-better-reputation/
https://blog.sigplan.org/2021/11/18/undefined-behavior-deserves-a-better-reputation/
https://github.com/rust-lang/rfcs/pull/3559
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doc.rust-lang.org/book/
https://pnkfx.org/presentations/krabcake-rust-verification-2023-april.pdf
https://pnkfx.org/presentations/krabcake-rust-verification-2023-april.pdf
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3140587.3062343
https://doi.org/10.1145/3140587.3062343
https://doi.org/10.1145/3591283
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1007/978-3-031-17143-7_33
https://doi.org/10.1007/978-3-031-17143-7_33
https://clang.llvm.org/
https://llvm.org/docs/index.html
https://doi.org/10.1145/1190215.1190220
https://arxiv.org/abs/2404.02230
https://discourse.llvm.org/t/rfc-load-instruction-uninitialized-memory-semantics/67481/1
https://discourse.llvm.org/t/rfc-load-instruction-uninitialized-memory-semantics/67481/1
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/3290380
https://mozilla.github.io/uniffi-rs/
https://doi.org/10.1145/1273442.1250746

26 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande, Ed Lazowska, Naomi Alterman, Rob Fatland,
Sarah Stone, Amanda Tan, Katherine Yelick, Eric Van Dusen, and James Mitchell. 2021. CloudBank: Managed Services to
Simplify Cloud Access for Computer Science Research and Education. In Practice and Experience in Advanced Research
Computing (Boston, MA, USA) (PEARC ’21). Association for Computing Machinery, New York, NY, USA, Article 45,
4 pages. https://doi.org/10.1145/3437359.3465586

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed. 2022. Semantic Soundness for Language Inter-
operability. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 609–624.
https://doi.org/10.1145/3519939.3523703

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2017. Energy
efficiency across programming languages: how do energy, time, and memory relate?. In Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering (Vancouver, BC, Canada) (SLE 2017). Association for
Computing Machinery, New York, NY, USA, 256–267. https://doi.org/10.1145/3136014.3136031

Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Understanding memory and thread safety
practices and issues in real-world Rust programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 763–779.
https://doi.org/10.1145/3385412.3386036

Rust Community. 2022. Clippy Lints - as_ptr_cast_mut. https://rust-lang.github.io/rust-clippy/master/index.html#/as%5Fp
tr%5Fcast%5Fmut

Rust Community. 2023a. The ‘bindgen‘ User Guide. https://rust-lang.github.io/rust-bindgen/.
Rust Community. 2023b. cbindgen User Guide. https://github.com/mozilla/cbindgen/blob/master/docs.md.
Rust Community. 2024a. CXX — safe interop between Rust and C++. https://cxx.rs/.
Rust Community. 2024b. The Diplomat Book. https://rust-diplomat.github.io/book/.
Rust Community. 2024c. Miri. https://github.com/rust-lang/miri
Rust Community. 2024d. The PyO3 user guide. https://pyo3.rs/v0.20.2/.
Rust Community. 2024e. The Rust Unstable Book. https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.h

tml
Gabriel Scherer, Max New, Nick Rioux, and Amal Ahmed. 2018. Fabous Interoperability for ML and a Linear Language. In

Foundations of Software Science and Computation Structures (Lecture Notes in Computer Science), Christel Baier and Ugo
Dal Lago (Eds.). Springer International Publishing, Cham, 146–162. https://doi.org/10.1007/978-3-319-89366-2_8

Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined Value Errors with Bit-Precision. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference (Anaheim, CA) (ATEC ’05). USENIX
Association, USA, 2.

Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit dynamic frames. ACM Trans. Program. Lang. Syst. 34, 1, Article 2
(may 2012), 58 pages. https://doi.org/10.1145/2160910.2160911

Stack Overflow. 2023. Stack Overflow Developer Survey 2023. https://survey.stackoverflow.co/2023/.
Neven Villani, Derek Dreyer, and Ralf Jung. 2023. Tree Borrows. https://github.com/Vanille-N/tree-borrows/blob/master/

full/main.pdf
Lei Xia, Baojian Hua, and Yang Wang. 2023. ACORN: Towards a Holistic Cross-Language Program Analysis for Rust.

https://csslab-ustc.github.io/publications/2023/acorn.pdf
Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R. Lyu. 2021. Memory-Safety Challenge Considered

Solved? An In-Depth Study with All Rust CVEs. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 3 (sep 2021), 25 pages.
https://doi.org/10.1145/3466642

Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. GhostCell: Separating Permissions from Data in Rust.
Proc. ACM Program. Lang. 5, ICFP, Article 92 (Aug. 2021), 30 pages. https://doi.org/10.1145/3473597

Victor Yodaiken. 2021. How ISO C became unusable for operating systems development. In Proceedings of the 11th Workshop
on Programming Languages and Operating Systems (Virtual Event, Germany) (PLOS ’21). Association for Computing
Machinery, New York, NY, USA, 84–90. https://doi.org/10.1145/3477113.3487274

https://doi.org/10.1145/3437359.3465586
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3385412.3386036
https://rust-lang.github.io/rust-clippy/master/index.html#/as%5Fptr%5Fcast%5Fmut
https://rust-lang.github.io/rust-clippy/master/index.html#/as%5Fptr%5Fcast%5Fmut
https://rust-lang.github.io/rust-bindgen/
https://github.com/mozilla/cbindgen/blob/master/docs.md
https://cxx.rs/
https://rust-diplomat.github.io/book/
https://github.com/rust-lang/miri
https://pyo3.rs/v0.20.2/
https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html
https://doc.rust-lang.org/beta/unstable-book/compiler-flags/sanitizer.html
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1145/2160910.2160911
https://github.com/Vanille-N/tree-borrows/blob/master/full/main.pdf
https://github.com/Vanille-N/tree-borrows/blob/master/full/main.pdf
https://csslab-ustc.github.io/publications/2023/acorn.pdf
https://doi.org/10.1145/3466642
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3477113.3487274

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 27

.1 Bug Classification & Reporting

Table 3. Download counts for each crate where a bug was found, sorted by “All-Time”. The mean download

count per day is aggregated across the 6 months between March 20th and September 20th, 2023.

Crate Version Mean G / Day G All-Time Last Updated Bug IDs
flate2 1.0.27 136,292 82,637,795 2023-08-15 36
foreign-types 0.5.0 88,416 64,223,888 2019-10-13 32
bzip2 0.4.4 23,862 13,447,830 2023-01-05 33
zmq 0.10.0 1,594 1,824,174 2022-11-04 18
lcms2 6.0.0 363 158,000 2023-09-02 39, 40, 9
dec 0.4.8 237 118,377 2022-02-05 38, 20, 43, 44
tectonic_engine_bibtex 0.2.1 32 15,680 2023-06-15 26
special-fun 0.2.0 28 15,176 2019-03-15 7
littlefs2 0.4.0 40 14,288 2023-02-07 34, 35
librsync 0.2.3 3 12,350 2023-03-10 37
libhydrogen 0.4.1 23 12,264 2021-05-16 19
bad64 0.6.0 10 6,071 2021-12-22 25
fluidlite 0.2.1 6 5,768 2021-08-21 16
sgp4-rs 0.4.0 10 5,680 2023-07-19 27
minimap2-sys 0.1.16 15 3,782 2023-09-12 42
minimp3_ex-sys 0.1.1 14 3,192 2020-12-19 15
libcmark-sys 0.1.0 1 2,396 2017-11-30 11
dec-number-sys 0.0.25 8 1,400 2022-11-28 22, 31, 5
xxhrs 2.0.0 3 1,390 2020-09-15 45
tetsy-secp256k1 0.7.0 3 1,202 2021-02-19 28
bchlib 0.2.1 1 739 2019-05-27 10
tree-sitter-svelte 0.10.2 2 718 2022-04-15 13
everrs 0.2.1 2 650 2020-04-12 3
x42ltc-sys 0.0.5 1 648 2020-09-05 14
quickjs_regex 0.2.3 3 637 2021-11-30 4, 23, 23
crypto_pimitives 0.1.1 2 535 2019-11-17 21
klu-rs 0.4.0 2 530 2022-09-15 41
ytnef 0.2.0 6 521 2021-11-14 17
tinyspline-sys 0.2.0 1 441 2020-06-09 12
ms5837 0.2.1 2 377 2022-07-30 30
spritz_cipher 0.1.0 1 324 2019-10-16 6
mseed 0.5.0 4 318 2023-08-24 24
jh-rs 0.1.0 1 206 2021-01-31 1
lsmlite-rs 0.1.0 2 52 2023-07-17 29

10.1.16+minimap2.2.26

28 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

T
a
b
l
e
4
.
U
n
i
q
u
e
b
u
g
s
d
e
t
e
c
t
e
d
b
y
o
u
r
t
o
o
l
,
s
o
r
t
e
d
b
y
t
h
e
e
r
r
o
r
t
y
p
e
r
e
p
o
r
t
e
d
b
y
M
i
r
i
(
“
M
i
r
i
E
r
r
o
r
T
y
p
e
”
)
a
n
d
o
u
r
a
d
d
i
t
i
o
n
a
l
c
l
a
s
s
i
f
i
c
a
t
i
o
n
(
“
A
n
n
o
t
a
t
e
d
E
r
r
o
r

T
y
p
e
”
)
.
A
“
-
”
i
n
d
i
c
a
t
e
s
t
h
a
t
o
u
r
c
l
a
s
s
i
f
i
c
a
t
i
o
n
i
s
t
h
e
s
a
m
e
a
s
r
e
p
o
r
t
e
d
b
y
M
i
r
i
.
W
h
e
n
a
c
o
m
m
i
t
i
s
l
i
s
t
e
d
i
n
t
h
e
l
a
s
t
c
o
l
u
m
n
,
i
t
i
n
d
i
c
a
t
e
s
t
h
a
t
t
h
e
b
u
g
h
a
s
b
e
e
n

f
i
x
e
d
.
I
f
m
u
l
t
i
p
l
e
c
o
m
m
i
t
s
w
e
r
e
u
s
e
d
t
o
f
i
x
a
b
u
g
,
w
e
p
r
o
v
i
d
e
t
h
e
l
a
s
t
c
o
m
m
i
t
i
n
t
h
e
s
e
r
i
e
s
.

ID
C
ra
te

Ve
rs
io
n

M
ir
iE

rr
or

Ty
pe

A
nn

ot
at
ed

Er
ro
r
Ty

pe
Lo

ca
ti
on

Is
su

e(
s)

Pu
ll
(s
)

C
om

m
it
(s
)

1
jh
-r
s

0.
1.
0

A
lig

nm
en
t

In
va
lid

Tr
an
sm

ut
at
io
n

Ru
st
→

Ru
st

#1
2

qu
ic
kj
s_
re
ge
x

0.
2.
3

Cr
os
s-
La
ng

ua
ge

Fr
ee

-
Ru

st
→

LL
VM

#2
3

ev
er
rs

0.
2.
1

In
co
rr
ec
tB

in
di
ng

In
co
rr
ec
tI
nt
eg
er

W
id
th

Bi
nd

in
g
→

Bi
nd

in
g

#1
4

qu
ic
kj
s_
re
ge
x

0.
2.
3

In
co
rr
ec
tB

in
di
ng

In
co
rr
ec
tI
nt
eg
er

W
id
th

Bi
nd

in
g
→

Bi
nd

in
g

#1
5

de
c-
nu

m
be
r-
sy
s

0.
0.
25

In
co
rr
ec
tB

in
di
ng

M
is
si
ng

Re
tu
rn

Ty
pe

Bi
nd

in
g
→

Bi
nd

in
g

#2
6

sp
rit
z_
ci
ph

er
0.
1.
0

In
co
rr
ec
tB

in
di
ng

M
is
si
ng

Re
tu
rn

Ty
pe

Bi
nd

in
g
→

Bi
nd

in
g

#1
7

sp
ec
ia
l-f
un

0.
2.
0

In
co
rr
ec
tB

in
di
ng

M
is
si
ng

Re
tu
rn

Ty
pe

Bi
nd

in
g
→

Bi
nd

in
g

#1
4

#1
3

de
d3
7f
8

8
se
cp
25
6k
1

0.
28
.0

In
co
rr
ec
tB

in
di
ng

O
ut

of
Bo

un
ds

A
cc
es
s

Bi
nd

in
g
→

Bi
nd

in
g

#6
69

#6
70

60
a5
e3
6

9
lc
m
s2

6.
0.
0

In
va
lid

En
um

Ta
g

Lo
gi
ca
lE

rr
or

Ru
st
→

Ru
st

85
21
8b
6

10
bc
hl
ib

0.
2.
1

M
em

or
y
Le
ak
ed

M
is
si
ng

C
D
es
tr
uc
to
r

Ru
st
→

Ru
st

#1
11

lib
cm

ar
k-
sy
s

0.
1.
0

M
em

or
y
Le
ak
ed

M
is
si
ng

C
D
es
tr
uc
to
r

Ru
st
→

Ru
st

#3
12

tin
ys
pl
in
e-
sy
s

0.
2.
0

M
em

or
y
Le
ak
ed

M
is
si
ng

C
D
es
tr
uc
to
r

Ru
st
→

Ru
st

#1
13

tr
ee
-s
itt
er
-s
ve
lte

0.
10
.2

M
em

or
y
Le
ak
ed

M
is
si
ng

C
D
es
tr
uc
to
r

Ru
st
→

Ru
st

#4
6

14
x4
2l
tc
-s
ys

0.
0.
5

M
em

or
y
Le
ak
ed

M
is
si
ng

C
D
es
tr
uc
to
r

Ru
st
→

Ru
st

#1
#2

1c
59
4f
2

15
m
in
im

p3
_e
x-
sy
s

0.
1.
1

M
em

or
y
Le
ak
ed

M
is
si
ng

C
D
es
tr
uc
to
r

Ru
st
→

Ru
st

#5
33
be
a0
d

16
flu

id
lit
e

0.
2.
1

M
em

or
y
Le
ak
ed

M
is
si
ng

fr
om

Ra
w

Ru
st
→

Ru
st

#1
5

17
yt
ne
f

0.
2.
0

M
em

or
y
Le
ak
ed

M
is
si
ng

fr
om

Ra
w

Ru
st
→

Ru
st

#1
18

zm
q

0.
10
.0

M
em

or
y
Le
ak
ed

M
is
si
ng

fr
om

Ra
w

Ru
st
→

Ru
st

#3
87

#3
88

19
lib

hy
dr
og

en
0.
4.
1

M
em

or
y
Le
ak
ed

M
is
si
ng

fr
om

Ra
w

Ru
st
→

Ru
st

#1
1

bd
dff

45
20

de
c

0.
4.
8

O
ut

of
Bo

un
ds

A
cc
es
s

-
LL

VM
→

LL
VM

#7
6

21
cr
yp

to
_p

im
iti
ve
s

0.
1.
1

O
ut

of
Bo

un
ds

A
cc
es
s

-
Ru

st
→

LL
VM

#1
22

de
c-
nu

m
be
r-
sy
s

0.
0.
25

O
ut

of
Bo

un
ds

A
cc
es
s

-
LL

VM
→

LL
VM

#7
6

23
qu

ic
kj
s_
re
ge
x

0.
2.
3

O
ut

of
Bo

un
ds

A
cc
es
s

-
Ru

st
→

LL
VM

#1
24

m
se
ed

0.
5.
0

O
ut

of
Bo

un
ds

A
cc
es
s

-
Ru

st
→

LL
VM

0c
fe
de
1

25
ba
d6
4

0.
6.
0

O
ut

of
Bo

un
ds

A
cc
es
s

-
LL

VM
→

LL
VM

6d
bd

96
1

26
te
ct
on

ic
_e
ng

in
e_
bi
bt
ex

0.
2.
1

Tr
ee

Bo
rr
ow

s
Fr
ee
in
g
Th

ro
ug

h
&m

ut
T

Ru
st
→

LL
VM

#1
12
9

c6
4e
52
4

27
sg
p4
-r
s

0.
4.
0

Tr
ee

Bo
rr
ow

s
In
co
rr
ec
tI
nt
eg
er

W
id
th

Bi
nd

in
g
→

LL
VM

#2
9

28
te
ts
y-
se
cp
25
6k
1

0.
7.
0

Tr
ee

Bo
rr
ow

s
In
co
rr
ec
tc

on
st

Ru
st
→

LL
VM

#3
Co

nt
in
ue
d
on

ne
xt

pa
ge

https://github.com/DaanA32/jh-rs/issues/1
https://github.com/hjiayz/quickjs_regex/issues/2
https://github.com/rot256/everrs/issues/1
https://github.com/hjiayz/quickjs_regex/pull/1
https://github.com/wisbery/dec-number-sys/pull/2
https://github.com/tl8roy/spritz_cipher/pull/1
https://github.com/vks/special-fun/issues/14
https://github.com/vks/special-fun/pull/13
https://github.com/vks/special-fun/commit/ded37f81122fdbd2471e70cad26c3d00a3e61b84
https://github.com/rust-bitcoin/rust-secp256k1/issues/669
https://github.com/rust-bitcoin/rust-secp256k1/pull/670
https://github.com/rust-bitcoin/rust-secp256k1/commit/60a5e36c14a25f756358c108b7b53fd469576e70
https://github.com/kornelski/rust-lcms2/commit/85218b6aa266fe6c50c09ef23937f0cd10ff3a7c
https://github.com/yuvadm/bchlib/issues/1
https://github.com/bnavetta/rcmark/issues/3
https://github.com/Jellonator/tinyspline-sys/issues/1
https://github.com/Himujjal/tree-sitter-svelte/issues/46
https://github.com/jmaibaum/x42ltc/issues/1
https://github.com/jmaibaum/x42ltc/pull/2
https://github.com/jmaibaum/x42ltc/commit/1c594f22ebae2a8fc61ce9657b0c22461916b037
https://github.com/mgeier/minimp3_ex-sys/pull/5
https://github.com/mgeier/minimp3_ex-sys/commit/33bea0d08ee4ecf2164727576aeb64bae4556bb6
https://github.com/katyo/fluidlite-rs/issues/15
https://github.com/alechussey/ytnef/issues/1
https://github.com/erickt/rust-zmq/issues/387
https://github.com/erickt/rust-zmq/pull/388
https://github.com/jedisct1/rust-libhydrogen/issues/11
https://github.com/jedisct1/rust-libhydrogen/commit/bddff45499844b56f56b53559e3b899488280c5a
https://github.com/MaterializeInc/rust-dec/issues/76
https://github.com/elalfer/rust-crypto-pimitives/issues/1
https://github.com/MaterializeInc/rust-dec/issues/76
https://github.com/hjiayz/quickjs_regex/pull/1
https://github.com/damb/mseed/commit/0cfede149eaae7b677a8cb3b1f1b21daf0965c22
https://github.com/yrp604/bad64-sys/commit/6dbd961380968c83fae3ba8f7be036292addd692
https://github.com/tectonic-typesetting/tectonic/pull/1129
https://github.com/tectonic-typesetting/tectonic/commit/c64e5243467fe94a1a6abe95cf8163ac2b3faacd
https://github.com/nsat/sgp4-rs/issues/29
https://github.com/tetcoin/tetsy-secp256k1/issues/3

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 29

Ta
bl
e
4
–
co

nt
in
ue

d
fr
om

pr
ev

io
us

pa
ge

ID
C
ra
te

Ve
rs
io
n

M
ir
iE

rr
or

Ty
pe

A
nn

ot
at
ed

Er
ro
r
Ty

pe
Lo

ca
ti
on

Is
su

e(
s)

Pu
ll
(s
)

C
om

m
it
(s
)

29
lsm

lit
e-
rs

0.
1.
0

Tr
ee

Bo
rr
ow

s
In
co
rr
ec
tc

on
st

Bi
nd

in
g
→

LL
VM

#5
2e
0c
f9
0

30
m
s5
83
7

0.
2.
1

Tr
ee

Bo
rr
ow

s
In
co
rr
ec
tc

on
st

Ru
st
→

LL
VM

#2
6

7b
e0
5c
1

31
de
c-
nu

m
be
r-
sy
s

0.
0.
25

Tr
ee

Bo
rr
ow

s
In
co
rr
ec
tc

on
st

Bi
nd

in
g
→

LL
VM

#1
#2

4a
12
cc
e

32
fo
re
ig
n-
ty
pe
s

0.
5.
0

Tr
ee

Bo
rr
ow

s
Ph

an
to
m

Un
sa

fe
Ce

ll
<T

>
Ru

st
→

LL
VM

#2
4

33
bz
ip
2

0.
4.
4

Tr
ee

Bo
rr
ow

s
Sh

ar
in
g
&m

ut
T

Ru
st
→

LL
VM

#9
4

34
lit
tle

fs
2

0.
4.
0

Tr
ee

Bo
rr
ow

s
Sh

ar
in
g
&m

ut
T

Ru
st
→

LL
VM

#5
4

35
lit
tle

fs
2

0.
4.
0

Tr
ee

Bo
rr
ow

s
Sh

ar
in
g
&m

ut
T

Ru
st
→

LL
VM

#5
4

36
fla
te
2

1.
0.
27

Tr
ee

Bo
rr
ow

s
Sh

ar
in
g
&m

ut
T

Ru
st
→

LL
VM

#3
92

#3
94

0a
58
4f
4

37
lib

rs
yn

c
0.
2.
3

Tr
ee

Bo
rr
ow

s
&T

as
*m

ut
T

Ru
st
→

Ru
st

#2
3

38
de
c

0.
4.
8

Tr
ee

Bo
rr
ow

s
&T

as
*m

ut
T

Ru
st
→

LL
VM

#7
4

#2
ec
e7
d8
4

39
lc
m
s2

6.
0.
0

Tr
ee

Bo
rr
ow

s
&T

as
*m

ut
T

Ru
st
→

LL
VM

#1
8

28
62
6e
d

40
lc
m
s2

6.
0.
0

Tr
ee

Bo
rr
ow

s
&T

as
*m

ut
T

Ru
st
→

LL
VM

5d
3b
64
8

41
kl
u-
rs

0.
4.
0

Tr
ee

Bo
rr
ow

s
&T

as
*m

ut
T

Ru
st
→

LL
VM

#1
c5
e8
9d
1

42
m
in
im

ap
2-
sy
s

0.
1.
16

U
ni
ni
tia

liz
ed

M
em

or
y

Er
ro
ne
ou

sF
ai
lu
re

Ru
st
→

Ru
st

2a
c2
a6
d

43
de
c

0.
4.
8

U
ni
ni
tia

liz
ed

M
em

or
y

In
co
m
pl
et
e
In
iti
al
iz
at
io
n

LL
VM
→

Ru
st

#7
6

#7
7

35
45
62
3

44
de
c

0.
4.
8

U
ni
ni
tia

liz
ed

M
em

or
y

In
co
m
pl
et
e
In
iti
al
iz
at
io
n

LL
VM
→

LL
VM

#7
6

#7
7

35
45
62
3

45
xx
hr
s

2.
0.
0

U
ni
ni
tia

liz
ed

M
em

or
y

U
ni
ni
tia

liz
ed

Pa
dd

in
g

LL
VM
→

Ru
st

#1
0

T
a
b
l
e
5
.
T
e
s
t
r
e
s
u
l
t
s
a
c
r
o
s
s
e
a
c
h
o
f
t
h
e
t
h
r
e
e
e
v
a
l
u
a
t
i
o
n
m
o
d
e
s
.
I
n
t
h
e
“
Z
e
r
o
e
d
”
m
o
d
e
,
a
l
l
s
t
a
c
k
a
n
d
h
e
a
p
m
e
m
o
r
y
f
r
o
m

L
L
V
M

i
s
z
e
r
o
-
i
n
i
t
i
a
l
i
z
e
d
.
I
n
t
h
e

“
U
n
i
n
i
t
i
a
l
i
z
e
d
”
m
o
d
e
,
L
L
V
M

i
s
a
l
l
o
w
e
d
t
o
r
e
a
d
u
n
i
n
i
t
i
a
l
i
z
e
d
b
y
t
e
s
w
i
t
h
o
u
t
t
h
r
o
w
i
n
g
a
n
e
r
r
o
r
.

Ze
ro
ed

U
ni
ni
ti
al
iz
ed

Er
ro
r
Ty

pe
St
ac
ke
d
Bo

rr
ow

s
Tr
ee

Bo
rr
ow

s
St
ac
ke
d
Bo

rr
ow

s
Tr
ee

Bo
rr
ow

s

Bo
rr
ow

in
g
Vi
ol
at
io
n

2.
7%

(2
45
)

2%
(1
84
)

2.
7%

(2
45
)

2%
(1
83
)

U
si
ng

U
ni
ni
tia

liz
ed

M
em

or
y

2.
2%

(1
97
)

2.
2%

(2
02
)

2.
2%

(2
00
)

2.
2%

(2
05
)

O
th
er

Er
ro
r

5.
4%

(4
95
)

5.
5%

(5
01
)

5.
2%

(4
79
)

5.
4%

(4
90
)

Pa
ss
ed

18
.7
%
(1
70
6)

18
.9
%
(1
72
4)

18
.6
%
(1
69
5)

18
.7
%
(1
71
0)

Ti
m
eo
ut

9.
7%

(8
90
)

10
.6
%
(9
68
)

9.
6%

(8
73
)

10
.4
%
(9
53
)

U
ns
up

po
rt
ed

O
pe
ra
tio

n
61
.3
%
(5
59
7)

60
.8
%
(5
55
1)

61
.8
%
(5
63
8)

61
.2
%
(5
58
9)

1 0
.1
.1
6+

m
in
im

ap
2.
2.
26

https://github.com/helsing-ai/lsmlite-rs/pull/5
https://github.com/helsing-ai/lsmlite-rs/commit/2e0cf9065822b542c00ea7fb7541723c27d3d725
https://github.com/silvergasp/ms5837-driver/pull/26
https://github.com/silvergasp/ms5837-driver/commit/7be05c1f0874b33115c9175c5340c7183d0a716f
https://github.com/wisbery/dec-number-sys/issues/1
https://github.com/wisbery/dec-number-sys/pull/2
https://github.com/wisbery/dec-number-sys/commit/4a12cce4b774a7e10f62f444933250f44601cb2f
https://github.com/sfackler/foreign-types/issues/24
https://github.com/alexcrichton/bzip2-rs/issues/94
https://github.com/trussed-dev/littlefs2/pull/54
https://github.com/trussed-dev/littlefs2/pull/54
https://github.com/rust-lang/flate2-rs/issues/392
https://github.com/rust-lang/flate2-rs/pull/394
https://github.com/rust-lang/flate2-rs/commit/0a584f4a0c465e33b52219e8ac74f2ec9a489f9f
https://github.com/mbrt/librsync-rs/issues/23
https://github.com/MaterializeInc/rust-dec/issues/74
https://github.com/wisbery/dec-number-sys/pull/2
https://github.com/MaterializeInc/rust-dec/commit/ece7d846fb7a8996935b29e33e062c597d7bf5c9
https://github.com/kornelski/rust-lcms2/pull/18
https://github.com/kornelski/rust-lcms2/commit/28626ed9d7b180f7dde606c643d4cc6367cf82ec
https://github.com/kornelski/rust-lcms2/commit/5d3b648ae5b9f9ccb70e49c37501a8a11600d6c0
https://github.com/pascalkuthe/klu-rs/pull/1
https://github.com/pascalkuthe/klu-rs/commit/c5e89d16afa997423076f70fbb6fc26f7a6bb518
https://github.com/jguhlin/minimap2-rs/commit/2ac2a6d4c8712d1534a63e895cd862c72c563b25
https://github.com/MaterializeInc/rust-dec/issues/76
https://github.com/MaterializeInc/rust-dec/pull/77
https://github.com/icmccorm/rust-dec/commit/3545623bc3515eebb6b4313c3c43477c657f3f39
https://github.com/MaterializeInc/rust-dec/issues/76
https://github.com/MaterializeInc/rust-dec/pull/77
https://github.com/icmccorm/rust-dec/commit/3545623bc3515eebb6b4313c3c43477c657f3f39
https://github.com/koraa/xxhrs/pull/10

30 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

A FORMAL SEMANTICS
Rust LLVM

A.1 Domains
𝑏 ∈ Bytes (bytes)

𝑚,𝑛 ∈ N ∪ {0} (sizes)
ℓ ∈ Locations : P(Bytes) (heap locations)
𝑡 ∈ Tags (access tags)

A.2 Type Syntax
𝜏 ::= int(𝑛) | ptr | 𝜏 (LLVM types)
𝜏 ::= int(𝑛) | ∗𝜏 | 𝜏𝑝 (Rust types)
𝜏𝑝 ::= ⟨𝜏, 𝑛⟩𝑚 (Rust products)
𝜏 ::= 𝜏 | 𝜏 (Types)

A.3 Value Syntax

𝑣𝑏 ::= 𝑏 | Pointer(ℓ, 𝜚) (Base Values)
𝑣 ::= 𝑣𝑏 | ⟨𝑣⟩ (LLVM Values)
𝑣 ::= 𝑣𝑏 (Rust Values)
𝜚 ::= 𝑡 | ∗ | · (Provenance)

A.4 Environments
` ∈ Mem : Loc→ (Bytes × Tag) (memory)
𝜎 ∈ TagSet : P(Tag) (exposed tags)

A.5 Conversion

`;𝜎 ⊢ 𝑣 : 𝜏 ↭ 𝑣 : 𝜏 ⊣ `′;𝜎 ′

“Under the store ` and tag set 𝜎 , Rust values 𝑣 of type 𝜏 and LLVM values 𝑣 of type 𝜏 are interconvertible,
producing the updated store `′ and tag set 𝜎 ′.”

C-Int

`;𝜎 ⊢ 𝑏𝑛 : int(𝑛)↭ 𝑏
𝑛
: int(𝑛) ⊣ `;𝜎

C-Product
fields(Pointer(ℓ, 𝜚) : 𝜏𝑝𝑛) = 𝑣 : 𝜏𝑝𝑛

∀𝑖 ∈ [1, 𝑛] . `𝑖−1;𝜎𝑖−1 ⊢ 𝑣 : 𝜏𝑝 ↭ 𝑣 : 𝜏𝑖 ⊣ `𝑖 ;𝜎𝑖
`0, 𝜎0 ⊢ Pointer(ℓ, 𝜚) : 𝜏𝑝

𝑛
↭ ⟨𝑣⟩ : 𝜏𝑛 ⊣ `𝑛 ;𝜎𝑛

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 31

`;𝜎 ⊢ 𝑣 : 𝜏 ⇝ 𝑣 : 𝜏 ⊣ `;𝜎 ′

“Under the store ` and tag set 𝜎 , Rust values 𝑣 of type 𝜏 can be converted to LLVM values 𝑣 of type 𝜏 ,
producing the updated tag set 𝜎 ′”

C-AnyToPointer

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏 ⇝ Pointer(ℓ, 𝜚) : ptr ⊣ `;𝜎

C-PointerToInt
ℓ ≜ 𝑏 expose(𝜎, 𝜚) = 𝜎 ′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏 ⇝ 𝑏 : int(𝑛𝑝𝑡𝑟) ⊣ `;𝜎 ′

C-FieldToScalar
`;𝜎 ⊢ read(ℓ, 𝜏) = 𝑣𝑏 ⊣ 𝜎 ′′

`;𝜎 ′′ ⊢ 𝑣𝑏 : 𝜏 ⇝ 𝑣𝑏 : 𝜏 ⊣ `;𝜎 ′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : ⟨𝜏, 0⟩⇝ 𝑣 : 𝜏 ⊣ `;𝜎 ′

C-ProductToInt
sizeof (𝜏𝑝) = 𝑞

`;𝜎 ⊢ read(ℓ, int(𝑞)) = 𝑏 ⊣ 𝜎 ′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏𝑝 ⇝ 𝑏 : int(𝑞) ⊣ `;𝜎 ′

`;𝜎 ⊢ 𝑣 : 𝜏 f 𝑣 : 𝜏 ⊣ `;𝜎 ′

“Under the store ` and tag set 𝜎 , LLVM values 𝑣 of type 𝜏 can be converted to Rust values 𝑣 of type 𝜏 ,
producing the updated store `′”

C-PointerFromPointer

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏 ⇝ Pointer(ℓ, 𝜚) : ptr ⊣ `;𝜎

C-PointerFromInt
ℓ ≜ 𝑏

`;𝜎 ⊢ Pointer(ℓ, ∗) : 𝜏 f 𝑏 : int(𝑛𝑝𝑡𝑟) ⊣ `;𝜎

C-FieldFromScalar
`;𝜎 ⊢ 𝑣𝑏 : 𝜏 f 𝑣𝑏 : 𝜏 ⊣ `′′;𝜎 `′′ ⊢ write(ℓ, 𝑣) ⊣ `′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : ⟨𝜏, 0⟩ f 𝑣𝑏 : 𝜏 ⊣ `′;𝜎

C-ProductFromInt
sizeof (𝜏𝑝) = 𝑞 ` ⊢ write(ℓ, 𝑏) ⊣ `′

`;𝜎 ⊢ Pointer(ℓ, 𝜚) : 𝜏𝑝 f 𝑏 : int(𝑞) ⊣ `′;𝜎

32 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

A.6 Store Operations

` (ℓ) = ⟨𝑏, 𝜚 ⟩

“The store ` maps the location ℓ to the byte 𝑏 with provenance 𝜚 .”

Store
ℓ ↦→ ⟨𝑏, 𝜚 ⟩ ∈ `
` (ℓ) = ⟨𝑏, 𝜚 ⟩

` (ℓ,𝑚) = ⟨𝑏, 𝜚 ⟩𝑚

“Reading a value of size𝑚 from location ℓ produces a list of𝑚 pairs of bytes and provenance values.”

Store-Slice
` (ℓ), . . . , ` (ℓ +𝑚 − 1) = ⟨𝑏, 𝜚 ⟩𝑚

` (ℓ,𝑚) = ⟨𝑏, 𝜚 ⟩𝑚

expose(𝜎, 𝜚) = 𝜎 ′

“Exposing the tag 𝜚 produces the updated tag set 𝜎 ′.”

Ex-Tag

expose(𝜎, 𝑡) = 𝜎 ∪ {𝑡}

Ex-Null

expose(𝜎, ·) = 𝜎

Ex-Wild

expose(𝜎, ∗) = 𝜎

` ⊢ write(ℓ, 𝑣) ⊣ `′

“Writing the value 𝑣 to the store ` at location ℓ produces the updated store `′.”

W-Bytes
ℓ ∈ dom(`0) ∀𝑖 ∈ [0, 𝑛 − 1] .`𝑖+1 = `𝑖 [ℓ + 𝑖 ↦→ ⟨𝑏𝑖 , ·⟩]

`0 ⊢ write(ℓ, 𝑏
𝑛) ⊣ `𝑛

W-Ptr
ℓ ∈ dom(`0) ℓ ≜ 𝑏

𝑛𝑝𝑡𝑟

∀𝑖 ∈ [0, 𝑛𝑝𝑡𝑟 − 1] .`𝑖+1 = `𝑖 [ℓ + 𝑖 ↦→ ⟨𝑏𝑖 , 𝜚 ⟩]
`0 ⊢ write(ℓ, Pointer(ℓ, 𝜚)) ⊣ `𝑛

`;𝜎 ⊢ read(ℓ, 𝜏) = 𝑣 ⊣ 𝜎 ′

“Reading a rust value 𝑣 of type 𝜏 from the store ` at location ℓ produces the updated tag set 𝜎 ′.”

R-Int
` [ℓ, 𝑛] = ⟨𝑏, 𝜚 ⟩𝑛

∀𝑖 ∈ [1, 𝑛] .expose(𝜎𝑖−1, 𝜚𝑖) = 𝜎𝑖

`;𝜎0 ⊢ read(ℓ, int(𝑛)) = 𝑏
𝑛 ⊣ 𝜎𝑛

R-Ptr
` [ℓ, 𝑛𝑝𝑡𝑟] = ⟨𝑏, 𝜚 ⟩

𝑛𝑝𝑡𝑟

ℓ ′ ≜ 𝑏
𝑛𝑝𝑡𝑟 ∀𝑖 ∈ [1, 𝑛𝑝𝑡𝑟] .𝜚𝑖 = 𝜚 ′

`;𝜎 ⊢ read(ℓ, ∗𝜏) = Pointer(ℓ ′, 𝜚 ′) ⊣ 𝜎

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 33

A.7 Metafunctions

sizeof (𝜏) = 𝑛

“The type 𝜏 has size 𝑛.”

TS-Int

sizeof (int(𝑛)) = 𝑛

TS-R-Ptr

sizeof (∗𝜏) = 𝑛𝑝𝑡𝑟

TS-L-Ptr

sizeof (ptr) = 𝑛𝑝𝑡𝑟

TS-R-Field
sizeof (𝜏) +𝑚 = 𝑛

sizeof (⟨𝜏,𝑚⟩) = 𝑛

TS-R-Prod
Σ𝑚𝑖=1 (sizeof (𝜏𝑝𝑖)) = 𝑛

sizeof (𝜏𝑝𝑚) = 𝑛

TS-L-Prod
Σ𝑚𝑖=1 (sizeof (𝜏𝑖)) = 𝑛

sizeof (𝜏𝑚) = 𝑛

scalar(𝜏)

“The type 𝜏 is a scalar.”

scalar(int(𝑛)) scalar(∗𝜏) scalar(ptr)

fields(𝑣 : 𝜏𝑝) = 𝑣 : 𝜏

“The rust product value 𝑣 : 𝜏𝑝 can be represented as a list of field values 𝑣 : 𝜏”

∀𝑖 ∈ [1, 𝑛] .𝑜𝑖 = Σ𝑖−1𝑗=1 (sizeof (𝜏𝑝 𝑗))

fields(Pointer(ℓ, 𝜚) : 𝜏𝑝𝑛) = Pointer(ℓ + 𝑜𝑖 , 𝜚) : 𝜏𝑝𝑖
𝑛

homogeneous(𝜏)

“The type 𝜏 is a homogeneous aggregate.”

homogeneous(𝜏𝑏) homogeneous(∗𝜏)

∃𝜏 .∀⟨𝜏 ′, 𝑛⟩ ∈ 𝜏𝑝 .𝑛 = 0 ∧ 𝜏 ′ = 𝜏 ∧ homogeneous(𝜏)
homogeneous(𝜏𝑝)

34 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

equivalent(𝜏) = 𝜏 ′

“The type 𝜏 is equivalent to the type 𝜏 ′”

equivalent(𝜏𝑏) = 𝜏𝑏

equivalent(∗𝜏) = ptr equivalent(ptr) = ∗𝜏

A.8 Well-formedness

⊢ 𝑣 : 𝜏

“The typed value 𝑣 : 𝜏 is well-formed.”

WF-Int

⊢ 𝑏𝑛 : int(𝑛)

WF-LLVMPtr

⊢ Pointer(ℓ, 𝜚) : ptr

WF-RustPtr

⊢ Pointer(ℓ, 𝜚) : ∗𝜏

WF-Rustprod

⊢ Pointer(ℓ, 𝜚) : 𝜏𝑝

WF-LLVMProd
∀𝑖 ∈ [1, 𝑛] ⊢ 𝑣𝑖 : 𝜏𝑖
⊢ ⟨𝑣𝑛⟩ : 𝜏𝑛

B THEORY
Lemma B.1 (Canonical Forms). For all values 𝑣 , if ⊢ 𝑣 : 𝜏 , then

(1) If 𝑣 ≜ 𝑏
𝑛
, then 𝜏 ≜ int(𝑛).

(2) If 𝑣 ≜ Pointer(ℓ, 𝜚), then 𝜏 is either ∗𝜏 or 𝜏𝑝 in Rust, or ptr in LLVM.
(3) If 𝑣 ≜ ⟨𝑣𝑛⟩ then 𝜏 is an LLVM product type 𝜏𝑛

Proof. By inspection of ⊢ 𝑣 : 𝜏 . □

Lemma B.2 (Compatible Forms). For all Rust typed values 𝑣 : 𝜏 and LLVM typed values 𝑣 : 𝜏 , if
`;𝜎 ⊢ 𝑣 : 𝜏 ⇝ 𝑣 : 𝜏 ⊣ `;𝜎 ′, then the form of 𝑣 : 𝜏 determines the possible forms of 𝑣 : 𝜏 .

(1) If 𝑣 : 𝜏 ≜ 𝑏
𝑛
: int(𝑛), then 𝑣 : 𝜏 is an LLVM integer type taking the same form.

(2) If 𝑣 : 𝜏 ≜ Pointer(ℓ, 𝜚) : 𝜏 , then 𝑣 : 𝜏 may be an opaque pointer of the form Pointer(ℓ, 𝜚) : ptr,
an integer of the form 𝑏

𝑛
: int(𝑛) , or an LLVM product type ⟨𝑣⟩ : 𝜏 .

Similarly, if `;𝜎 ⊢ 𝑣 : 𝜏 f 𝑣 : 𝜏 ⊣ `′;𝜎 then the form of 𝑣 : 𝜏 determines the possible forms of 𝑣 : 𝜏 .
(1) If 𝑣 : 𝜏 ≜ 𝑏

𝑛
: int(𝑛), then 𝑣 : 𝜏 must be an integer value of the same form, a pointer value

of the form Pointer(ℓ, ∗) : ∗𝜏 or a Rust product value Pointer(ℓ, 𝜚) : 𝜏𝑝 stored at some valid
location ℓ .

(2) If 𝑣 : 𝜏 ≜ Pointer(ℓ, 𝜚) : ptr, then 𝑣 : 𝜏 must be a Rust product value Pointer(ℓ, 𝜚) : 𝜏𝑝 for
some 𝜏𝑝 or a Rust pointer value Pointer(ℓ, 𝜚) : ∗𝜏 for some 𝜏 .

(3) If 𝑣 : 𝜏 ≜ ⟨𝜏⟩ : 𝜏 then 𝑣 : 𝜏 must be a Rust product value Pointer(ℓ, 𝜚) : 𝜏𝑝 for some 𝜏𝑝 .

Proof. By Lemma B.1 and inspection of the syntax for the value conversion judgement. □

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 35

Lemma 3.1. For all well-formed, typed scalar values 𝑣 : 𝜏 and all valid heap locations ℓ , we have:
` ⊢ write(ℓ, 𝑣) ⊣ `′ ⇒ `′;𝜎 ⊢ read(ℓ, 𝜏) = 𝑣 ⊣ 𝜎 ′

Proof. By inversion, guided by the structure of 𝑣 : 𝜏 . Since 𝑣 : 𝜏 is a well-formed, scalar-typed
value, we have ⊢ 𝑣 : 𝜏 and scalar(𝜏). It follows that 𝑣 is either a byte string𝑏 or a pointerPointer(ℓ ′, 𝜚)
to some location ℓ with some provenance 𝜚 .
Case 1: 𝑣 ≜ 𝑏

𝑛

By Lemma B.1 we have that 𝜏 ≜ int(𝑛). By inversion of W-Bytes and for 𝑖 ∈ [0, 𝑛 − 1], the store
`′ maps each location ℓ + 𝑖 to the tuple ⟨𝑏𝑖+1, ·⟩. By Store and Store-List, we have that

`′ (ℓ), . . . , `′ (ℓ + 𝑛 − 1) = `′ (ℓ, 𝑛) = ⟨𝑏, ·⟩𝑛

Exposing the null provenance of each byte leave 𝜎 unchanged (Ex-Null). We can now apply
R-Int to read the original value 𝑏 back from the store.

Case 2: 𝑣 ≜ Pointer(ℓ, 𝜚)
By Lemma B.1 and since scalar(𝜏), we have that 𝜏 is either ∗𝜏 of ptr. Each are treated equivalently.
We can implicitly convert the location ℓ into the byte string, 𝑏

𝑛

𝑝𝑡𝑟 , so we proceed as in the first
case. However, instead of the null provenance, we have:

`′ (ℓ, 𝑛𝑝𝑡𝑟) = ⟨𝑏, 𝜚 ⟩
𝑛𝑝𝑡𝑟

Each 𝜚𝑖 is equivalent to the provenance 𝜚 of the pointer value. Now, we can apply R-Ptr to reach
our goal by reading the original value Pointer(ℓ, 𝜚) back from the store.

□

Theorem3.1. For all well-typed Rust values 𝑣 : 𝜏 and LLVMvalues 𝑣 : 𝜏 , if either value is convertible
to the other, then sizeof (𝜏) = sizeof (𝜏).

Proof. By induction on value conversion, guided by Lemmas B.2 and B.1. Integers are inter-
convertible by C-Int and retain the same size on each side of the boundary. The size of a pointer
is the size of its address, which is the same on each side of the boundary. Pointers can only be
converted into integers of equal size. Size is preserved for product values by induction on their
fields. Fields with non-zero padding are converted into integers with a size equal to the size of their
value plus its padding. Fields without padding are treated as equal to the values they contain, so
size is preserved by induction. □

Theorem 3.2 (Conversion is semi-functional). For all well-typed values 𝑣 : 𝜏 and 𝑣 : 𝜏 :
`;𝜎 ⊢ 𝑣 : 𝜏 f 𝑣 : 𝜏 ⊣ `′𝜎 ⇒ `′;𝜎 ⊢ 𝑣 : 𝜏 ⇝ 𝑣 : 𝜏 ⊣ `′𝜎 ′

Proof. By induction on value conversion. By Lemma B.1, 𝑣 : 𝜏 can take the following forms:
Case 1: 𝑣 : 𝜏 ≜ 𝑏 : 𝜏𝑏

By Lemma B.2, 𝑣 : 𝜏 can take one of the following forms:
Subcase 1: 𝑣 : 𝜏 ≜ 𝑏 : 𝜏𝑏

Both typed values are interconvertible by C-Int.
Subcase 2: 𝑣 : 𝜏 ≜ Pointer(ℓ, ∗) : 𝜏

By inversion of C-PtrFromInt, we have ℓ ≜ 𝑏. We can now apply C-PtrToInt to achieve
our goal.

Subcase 3: 𝑣 : 𝜏 ≜ Pointer(ℓ, ∗) : ⟨𝜏, 0⟩ and scalar(𝜏)

36 Ian McCormack, Joshua Sunshine, and Jonathan Aldrich

By inversion of C-FieldFromScalar, we have:

`;𝜎 ⊢ 𝑣𝑏 : 𝜏 f 𝑣𝑏 : 𝜏 ⊣ `′′;𝜎 `′′ ⊢ write(ℓ, 𝑏) ⊣ `′ scalar(𝜏)
By the induction hypothesis and Lemma 3.1, we have:

`′𝜎 ⊢ read(ℓ, 𝜏) ⊣ `′;𝜎 ′′ `′;𝜎 ′′ ⊢ 𝜏 ⇝ 𝑣𝑏 ⊣ `′;𝜎 ′

Now we can apply C-FieldToScalar to reach our goal.
Subcase 4: 𝑣 : 𝜏 ≜ Pointer(ℓ, ∗) : 𝜏𝑝

By inversion of C-ProdFromInt, we have:

sizeof (𝜏𝑝) = 𝑞 ` ⊣ write(ℓ, 𝑏, ⊣)`′

By Lemma 3.1, we have:
`′𝜎 ⊢ read(ℓ, 𝜏) ⊣ `′;𝜎 ′

We can apply C-ProdToInt to reach our goal.
Case 2: 𝑣 : 𝜏 ≜ Pointer(ℓ, 𝜚) : ptr
By Lemma B.2, 𝑣 : 𝜏 must take the following forms:
Subcase 1: 𝑣 : 𝜏 ≜ Pointer(ℓ, 𝜚) : ∗𝜏 for some 𝜏

Both typed values are interconvertible by C-PointerFromPointer and C-AnyToPointer.
Subcase 2: 𝑣 : 𝜏 ≜ Pointer(ℓ, 𝜚) : ⟨𝜏, 0⟩ for some 𝜏

Equivalent to Case 1, Subcase 3.
Case 3: 𝑣 : 𝜏 ≜ ⟨𝑣⟩ : 𝜏

By Lemma B.2, 𝑣 : 𝜏 must be equivalent to Pointer(ℓ, 𝜚) : 𝜏𝑝 for some 𝜏𝑝 , which is interconvertible
by C-Product and the induction hypothesis.

□

A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries 37

C PARAMETER PASSING
Algorithm 1: Converting a list of LLVM arguments to Rust arguments.
// A list of typed values provided by Rust

𝑅 ← [𝑣, 𝜏𝑛];
// A list of LLVM types.

𝐿 ← [𝜏𝑛];
// A calling convention; either ‘static’ or ‘variable’.

𝐶 ← 𝑐;
// The list of converted arguments

𝐴← [];
// The initial store and tag set.

S ← `;𝜎 ;
while 𝑅 is not empty do

𝑣𝑖 : 𝜏𝑖 ← next(𝑅);
if L is not empty then

𝜏 𝑗 ← next(𝐿);
if sizeof (𝜏𝑖) = sizeof (𝜏 𝑗) then
S ← S′ where S ⊢ 𝑣𝑖 : 𝜏𝑖 ⇝ 𝑣 𝑗 : 𝜏 𝑗 ⊣ S′;
𝐴← 𝐴 ++ [𝑣 𝑗 : 𝜏 𝑗];
continue

else
/* We only expand homogeneous aggregates when converting from Rust; in

the other direction, we skip directly to an error. */

if 𝜏 ≜ 𝜏𝑝
𝑛
and homogeneous(𝜏) then

if len(𝐿) ≥ 𝑛 + len(𝑅) then
𝑅 ← 𝑅 ++ [fields(𝑣𝑖 : 𝜏𝑖)];
continue

end
end

end
else

if 𝐿 is empty and 𝐶 = variable and scalar(𝜏𝑖) then
𝐿 ← 𝐿 ++ [equivalent(𝜏𝑖)]; continue

end
end
error()

end

	Abstract
	1 Introduction
	2 Background
	2.1 Stacked Borrows
	2.2 Tree Borrows
	2.3 Rust vs. C and C++
	2.4 Interoperation

	3 Methodology
	3.1 Sampling
	3.2 Implementation
	3.3 Evaluation

	4 Results
	4.1 Ownership
	4.2 Allocation
	4.3 Typing

	5 Discussion
	6 Related Work
	7 Conclusion
	References
	.1 Bug Classification & Reporting

	A Formal Semantics
	A.1 Domains
	A.2 Type Syntax
	A.3 Value Syntax
	A.4 Environments
	A.5 Conversion
	A.6 Store Operations
	A.7 Metafunctions
	A.8 Well-formedness

	B Theory
	C Parameter Passing

